source("0_helpers.R")

We used these helper functions. These are the .Rprofile settings

  1. First we wrangled the data.
  2. We decided which data to keep.
  1. Then we analyzed our sample and looked at some descriptives.
  2. The main analyses: We analyzed birth order effects (click here for nice graphs of birth order effects).
  3. Then we ran some robustness analyses.
  4. Additionally, we imputed missing data.
  5. We checked imputation data to see whether imputation was done correctly.
  6. And analyzed imputed data for birth order effects.

More information about the Indonesian Family Life Survey (IFLS).

Predicted mean scores and 99.5% confidence intervals from linear mixed effects models with sibship size, birth order, gender, and a third-order polynomial effect of age as fixed effects and maternal identity as random effect are displayed for (a.) intelligence, (b.) educational attainment, (c.) extraversion, (d.) neuroticism, (e.) conscientiousness, (f.) agreeableness, (g.) openness, and (h.–i.) risk aversion. All outcome measurements are z-standardized based on the full sample. Numbers in parentheses show sample size.

Predicted mean scores and 99.5% confidence intervals from linear mixed effects models with sibship size, birth order, gender, and a third-order polynomial effect of age as fixed effects and maternal identity as random effect are displayed for (a.) intelligence, (b.) educational attainment, (c.) extraversion, (d.) neuroticism, (e.) conscientiousness, (f.) agreeableness, (g.) openness, and (h.–i.) risk aversion. All outcome measurements are z-standardized based on the full sample. Numbers in parentheses show sample size.

Authors & Abstract & Acknowledgements

Authors

Laura J. Botzet (University of Goettingen, Germany) Julia M. Rohrer (University of Leipzig, Germany) Ruben C. Arslan (Max Planck Institute for Human Development, Germany)

This supplementary website has been archived on Zenodo.org DOI.

Abstract

Few studies have examined birth order effects on personality in countries that are not Western, educated, industrialized, rich, and democratic (WEIRD). However, theories have generally suggested that interculturally universal family dynamics are the mechanism behind birth order effects, and prominent theories such as resource dilution would predict even stronger linear effects in poorer countries. Here, we examine a subset of up to 11,188 participants in the Indonesian Family Life Survey to investigate whether later-borns differ from earlier-borns in intelligence, educational attainment, Big Five, and risk aversion. Analyses were performed using within-family designs in mixed-effects models. In model comparisons we tested for linear and nonlinear birth order effects as well as for possible interactions of birth order and sibship size. Our estimated effect sizes are consistent with the emerging account of birth order as having relatively little impact on intelligence, Big Five, and risk aversion. We found a nonlinear pattern for educational attainment that was not robust to imputation of missing data and not aligned with trends in WEIRD countries. Overall, the small birth order effects reported in other studies appear to be culturally specific.

References

Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., … Chang, W. (2017). rmarkdown: Dynamic documents for R (R package version 1.7). Retrieved from https://CRAN.R-project.org/package=rmarkdown

Arslan, R. (2014). formr: Formr survey framework (R package version 0.6.12).

Auguie, B. (2017). gridExtra: Miscellaneous functions for “grid” graphics (R package version 2.3). Retrieved from https://CRAN.R-project.org/package=gridExtra

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4 (version 1.1-12). Journal of Statistical Software, 67, 1–48. doi:10.18637/jss.v067.i01

Bernaards, C. A., & I.Jennrich, R. (2005). Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis (version 2014.11-1). Educational and Psychological Measurement, 65, 676–696.

Daróczi, G., & Tsegelskyi, R. (2017). pander: An R ’pandoc’ writer (R package version 0.6.1). Retrieved from https://CRAN.R-project.org/package=pander

Fox, J. (2003). Effect displays in R for generalised linear models. Journal of Statistical Software, 8, 1–27. Retrieved from http://www.jstatsoft.org/v08/i15/

Grolemund, G., & Wickham, H. (2011). Dates and times made easy with lubridate (version 1.6.0). Journal of Statistical Software, 40, 1–25. Retrieved from http://www.jstatsoft.org/v40/i03/

Harrell Jr, F. E., Charles Dupont, & others. (2017). Hmisc: Harrell miscellaneous (R package version 4.0-3). Retrieved from https://CRAN.R-project.org/package=Hmisc

Kuznetsova, A., Bruun Brockhoff, P., & Haubo Bojesen Christensen, R. (2016). lmerTest: Tests in linear mixed effects models (R package version 2.0-33). Retrieved from https://CRAN.R-project.org/package=lmerTest

R Core Team. (2017). R: A language and environment for statistical computing (version 3.4.1). Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Revelle, W. (2017). psych: Procedures for psychological, psychometric, and personality research (R package version 1.7.8). Evanston, Illinois: Northwestern University. Retrieved from https://CRAN.R-project.org/package=psych

Robinson, D. (2017). broom: Convert statistical analysis objects into tidy data frames (R package version 0.4.2). Retrieved from https://CRAN.R-project.org/package=broom

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling (version 0.5-22). Journal of Statistical Software, 48, 1–36. Retrieved from http://www.jstatsoft.org/v48/i02/

Stanley, D. (2017). apaTables: Create american psychological association (apa) style tables (R package version 1.5.1). Retrieved from https://CRAN.R-project.org/package=apaTables

Ushey, K., McPherson, J., Cheng, J., Atkins, A., & Allaire, J. (2016). packrat: A dependency management system for projects and their R package dependencies (R package version 0.4.8-1). Retrieved from https://CRAN.R-project.org/package=packrat

Wickham, H. (2009). ggplot2: Elegant graphics for data analysis (version 2.2.0). Springer-Verlag New York. Retrieved from http://ggplot2.org

Wickham, H. (2011). The split-apply-combine strategy for data analysis (version 1.8.4). Journal of Statistical Software, 40, 1–29. Retrieved from http://www.jstatsoft.org/v40/i01/

Wickham, H. (2017a). stringr: Simple, consistent wrappers for common string operations (R package version 1.2.0). Retrieved from https://CRAN.R-project.org/package=stringr

Wickham, H. (2017b). forcats: Tools for working with categorical variables (factors) (R package version 0.2.0). Retrieved from https://CRAN.R-project.org/package=forcats

Wickham, H., & Chang, W. (2017). devtools: Tools to make developing R packages easier (R package version 1.13.3). Retrieved from https://CRAN.R-project.org/package=devtools

Wickham, H., & Henry, L. (2017). tidyr: Easily tidy data with ’spread()’ and ’gather()’ functions (R package version 0.7.2). Retrieved from https://CRAN.R-project.org/package=tidyr

Wickham, H., & Miller, E. (2017). haven: Import and export ’spss’, ’stata’ and ’sas’ files (R package version 1.1.0). Retrieved from https://CRAN.R-project.org/package=haven

Wickham, H., Francois, R., Henry, L., & Müller, K. (2017). dplyr: A grammar of data manipulation (R package version 0.7.4). Retrieved from https://CRAN.R-project.org/package=dplyr

Wilke, C. O. (2017). cowplot: Streamlined plot theme and plot annotations for ’ggplot2’ (R package version 0.8.0). Retrieved from https://CRAN.R-project.org/package=cowplot

Xie, Y. (2017a). knitr: A general-purpose package for dynamic report generation in R (R package version 1.17). Retrieved from https://yihui.name/knitr/

Xie, Y. (2017b). formatR: Format R code automatically (R package version 1.5). Retrieved from https://CRAN.R-project.org/package=formatR

LS0tCnRpdGxlOiA8Zm9udCBjb2xvcj0iIzY2QzJBNSI+QW5hbHl6aW5nIEVmZmVjdHMgb2YgQmlydGggT3JkZXIgb24gSW50ZWxsaWdlbmNlLCBFZHVjYXRpb25hbCBBdHRhaW5tZW50LCBCaWcgRml2ZSwgYW5kIFJpc2sgQXZlcnNpb24gaW4gYW4gSW5kb25lc2lhbiBTYW1wbGU8L2ZvbnQ+CmJpYmxpb2dyYXBoeTogcGFja3JhdF9iaWJsaW9ncmFwaHkuYmlidGV4CmNzbDogYXBhLWN1c3RvbS1uby1pc3N1ZS5jc2wKbm9jaXRlOiB8CiAgICBAUiBAcGFja3JhdCBAcm1hcmtkb3duIEBrbml0ciBAZm9ybXIgQHBhbmRlciBAbHVicmlkYXRlIEBzdHJpbmdyIEBicm9vbSBAZWZmZWN0cyBAZ2dwbG90MiBAdGlkeXIgQGRwbHlyIEBmb3JtYXRSIEBkZXZ0b29scyBAaGF2ZW4gQEdQQXJvdGF0aW9uIEBwc3ljaCBAbGF2YWFuIEBIbWlzYyBAcGx5ciBAYXBhVGFibGVzIEBsbWU0IEBsbWVyVGVzdCBAZm9yY2F0cyBAY293cGxvdCBAZ3JpZEV4dHJhCi0tLQoKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0Kc291cmNlKCIwX2hlbHBlcnMuUiIpCmBgYAoKPGRpdiBjbGFzcz0icm93Ij4KCjxkaXYgY2xhc3M9ImNvbC1tZC01Ij4KCldlIHVzZWQgdGhlc2UgW2hlbHBlciBmdW5jdGlvbnNdKDBfaGVscGVycy5odG1sKS4gVGhlc2UgYXJlIHRoZSBbLlJwcm9maWxlIHNldHRpbmdzXSguUnByb2ZpbGUuaHRtbCkKCjEuIEZpcnN0IHdlIFt3cmFuZ2xlZCB0aGUgZGF0YV0oMV9kYXRhX2ltcG9ydC5odG1sKS4KMi4gV2UgW2RlY2lkZWQgd2hpY2ggZGF0YSB0byBrZWVwXSgyX2luY2x1c2lvbi5odG1sKS4KICAtIHNlZSB0aGUgW2NvZGVib29rXSgyX2NvZGVib29rLmh0bWwpIGZvciBmdXJ0aGVyIGRldGFpbHMKMy4gVGhlbiB3ZSBbYW5hbHl6ZWQgb3VyIHNhbXBsZSBhbmQgbG9va2VkIGF0IHNvbWUgZGVzY3JpcHRpdmVzXSgzX3NhbXBsZV9hbmFseXNlcy5odG1sKS4KNC4gVGhlIG1haW4gYW5hbHlzZXM6IFdlIFthbmFseXplZF0oNF9hbmFseXNlcy5odG1sKSBiaXJ0aCBvcmRlciBlZmZlY3RzIChjbGljayBoZXJlIGZvciBuaWNlIGdyYXBocyBvZiBiaXJ0aCBvcmRlciBlZmZlY3RzKS4KNS4gVGhlbiB3ZSBbcmFuIHNvbWUgcm9idXN0bmVzcyBhbmFseXNlc10oNF9hbmFseXNlc19yb2J1c3QuaHRtbCkuCjYuIEFkZGl0aW9uYWxseSwgd2UgW2ltcHV0ZWQgbWlzc2luZyBkYXRhXSgzX2ltcHV0YXRpb24uaHRtbCkuCjcuIFdlIFtjaGVja2VkIGltcHV0YXRpb24gZGF0YV0oM19pbXB1dGF0aW9uX2NoZWNrLmh0bWwpIHRvIHNlZSB3aGV0aGVyIGltcHV0YXRpb24gd2FzIGRvbmUgY29ycmVjdGx5Lgo4LiBBbmQgW2FuYWx5emVkIGltcHV0ZWQgZGF0YV0oNF9hbmFseXNlc19pbXB1dGVkX2RhdGEuaHRtbCkgZm9yIGJpcnRoIG9yZGVyIGVmZmVjdHMuCgpNb3JlIGluZm9ybWF0aW9uIGFib3V0IHRoZSBbSW5kb25lc2lhbiBGYW1pbHkgTGlmZSBTdXJ2ZXkgKElGTFMpXShodHRwOi8vd3d3LnJhbmQub3JnL2xhYm9yL0ZMUy9JRkxTLmh0bWwpLgoKCjwvZGl2PgoKPGRpdiBjbGFzcz0iY29sLW1kLTYgY29sLW1kLW9mZnNldC0xIj4KIVtQcmVkaWN0ZWQgbWVhbiBzY29yZXMgYW5kIDk5LjUlIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIGZyb20gbGluZWFyIG1peGVkIGVmZmVjdHMgbW9kZWxzIHdpdGggc2lic2hpcCBzaXplLCBiaXJ0aCBvcmRlciwgZ2VuZGVyLCBhbmQgYSB0aGlyZC1vcmRlciBwb2x5bm9taWFsIGVmZmVjdCBvZiBhZ2UgYXMgZml4ZWQgZWZmZWN0cyBhbmQgbWF0ZXJuYWwgaWRlbnRpdHkgYXMgcmFuZG9tIGVmZmVjdCBhcmUgZGlzcGxheWVkIGZvciAoYS4pIGludGVsbGlnZW5jZSwgKGIuKSBlZHVjYXRpb25hbCBhdHRhaW5tZW50LCAoYy4pIGV4dHJhdmVyc2lvbiwgKGQuKSBuZXVyb3RpY2lzbSwgKGUuKSBjb25zY2llbnRpb3VzbmVzcywgKGYuKSBhZ3JlZWFibGVuZXNzLCAoZy4pIG9wZW5uZXNzLCBhbmQgKGgu4oCTaS4pIHJpc2sgYXZlcnNpb24uIEFsbCBvdXRjb21lIG1lYXN1cmVtZW50cyBhcmUgei1zdGFuZGFyZGl6ZWQgYmFzZWQgb24gdGhlIGZ1bGwgc2FtcGxlLiBOdW1iZXJzIGluIHBhcmVudGhlc2VzIHNob3cgc2FtcGxlIHNpemUuXShwbG90MV9maW5hbC5wbmcpCjwvZGl2PgoKPC9kaXY+CjxkaXYgY2xhc3M9ImNsZWFyZml4Ij48L2Rpdj4KCiMjIEF1dGhvcnMgJiBBYnN0cmFjdCAmIEFja25vd2xlZGdlbWVudHMgey50YWJzZXQgLnRhYnNldC1zdGlja3l9CgojIyMgQXV0aG9ycwpMYXVyYSBKLiBCb3R6ZXQgKFVuaXZlcnNpdHkgb2YgR29ldHRpbmdlbiwgR2VybWFueSkKSnVsaWEgTS4gUm9ocmVyIChVbml2ZXJzaXR5IG9mIExlaXB6aWcsIEdlcm1hbnkpClJ1YmVuIEMuIEFyc2xhbiAoTWF4IFBsYW5jayBJbnN0aXR1dGUgZm9yIEh1bWFuIERldmVsb3BtZW50LCBHZXJtYW55KQoKClRoaXMgc3VwcGxlbWVudGFyeSB3ZWJzaXRlIGhhcyBiZWVuIGFyY2hpdmVkIG9uIFplbm9kby5vcmcgWyFbRE9JXSgpXSgpLgoKCiMjIyBBYnN0cmFjdApGZXcgc3R1ZGllcyBoYXZlIGV4YW1pbmVkIGJpcnRoIG9yZGVyIGVmZmVjdHMgb24gcGVyc29uYWxpdHkgaW4gY291bnRyaWVzIHRoYXQgYXJlIG5vdCBXZXN0ZXJuLCBlZHVjYXRlZCwgaW5kdXN0cmlhbGl6ZWQsIHJpY2gsIGFuZCBkZW1vY3JhdGljIChXRUlSRCkuIEhvd2V2ZXIsIHRoZW9yaWVzIGhhdmUgZ2VuZXJhbGx5IHN1Z2dlc3RlZCB0aGF0IGludGVyY3VsdHVyYWxseSB1bml2ZXJzYWwgZmFtaWx5IGR5bmFtaWNzIGFyZSB0aGUgbWVjaGFuaXNtIGJlaGluZCBiaXJ0aCBvcmRlciBlZmZlY3RzLCBhbmQgcHJvbWluZW50IHRoZW9yaWVzIHN1Y2ggYXMgcmVzb3VyY2UgZGlsdXRpb24gd291bGQgcHJlZGljdCBldmVuIHN0cm9uZ2VyIGxpbmVhciBlZmZlY3RzIGluIHBvb3JlciBjb3VudHJpZXMuIEhlcmUsIHdlIGV4YW1pbmUgYSBzdWJzZXQgb2YgdXAgdG8gMTEsMTg4IHBhcnRpY2lwYW50cyBpbiB0aGUgSW5kb25lc2lhbiBGYW1pbHkgTGlmZSBTdXJ2ZXkgdG8gaW52ZXN0aWdhdGUgd2hldGhlciBsYXRlci1ib3JucyBkaWZmZXIgZnJvbSBlYXJsaWVyLWJvcm5zIGluIGludGVsbGlnZW5jZSwgZWR1Y2F0aW9uYWwgYXR0YWlubWVudCwgQmlnIEZpdmUsIGFuZCByaXNrIGF2ZXJzaW9uLiBBbmFseXNlcyB3ZXJlIHBlcmZvcm1lZCB1c2luZyB3aXRoaW4tZmFtaWx5IGRlc2lnbnMgaW4gbWl4ZWQtZWZmZWN0cyBtb2RlbHMuIEluIG1vZGVsIGNvbXBhcmlzb25zIHdlIHRlc3RlZCBmb3IgbGluZWFyIGFuZCBub25saW5lYXIgYmlydGggb3JkZXIgZWZmZWN0cyBhcyB3ZWxsIGFzIGZvciBwb3NzaWJsZSBpbnRlcmFjdGlvbnMgb2YgYmlydGggb3JkZXIgYW5kIHNpYnNoaXAgc2l6ZS4gT3VyIGVzdGltYXRlZCBlZmZlY3Qgc2l6ZXMgYXJlIGNvbnNpc3RlbnQgd2l0aCB0aGUgZW1lcmdpbmcgYWNjb3VudCBvZiBiaXJ0aCBvcmRlciBhcyBoYXZpbmcgcmVsYXRpdmVseSBsaXR0bGUgaW1wYWN0IG9uIGludGVsbGlnZW5jZSwgQmlnIEZpdmUsIGFuZCByaXNrIGF2ZXJzaW9uLiBXZSBmb3VuZCBhIG5vbmxpbmVhciBwYXR0ZXJuIGZvciBlZHVjYXRpb25hbCBhdHRhaW5tZW50IHRoYXQgd2FzIG5vdCByb2J1c3QgdG8gaW1wdXRhdGlvbiBvZiBtaXNzaW5nIGRhdGEgYW5kIG5vdCBhbGlnbmVkIHdpdGggdHJlbmRzIGluIFdFSVJEIGNvdW50cmllcy4gT3ZlcmFsbCwgdGhlIHNtYWxsIGJpcnRoIG9yZGVyIGVmZmVjdHMgcmVwb3J0ZWQgaW4gb3RoZXIgc3R1ZGllcyBhcHBlYXIgdG8gYmUgY3VsdHVyYWxseSBzcGVjaWZpYy4gCgoKIyMjIFJlZmVyZW5jZXMKCg==