## Lade nötiges Paket: carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
## Lade nötiges Paket: Matrix
##
## Attache Paket: 'sjstats'
## Die folgenden Objekte sind maskiert von 'package:effectsize':
##
## cohens_f, cramers_v, phi
##
## Attache Paket: 'lmerTest'
## Das folgende Objekt ist maskiert 'package:lme4':
##
## lmer
## Das folgende Objekt ist maskiert 'package:stats':
##
## step
##
## Attache Paket: 'tidyr'
## Die folgenden Objekte sind maskiert von 'package:Matrix':
##
## expand, pack, unpack
library(ggpubr)
library(RColorBrewer)
library(coefplot)
library(tibble)
library(purrr) # for running multiple regression
library(broom)
##
## Attache Paket: 'broom'
## Das folgende Objekt ist maskiert 'package:sjstats':
##
## bootstrap
## This is mvmeta 1.0.3. For an overview type: help('mvmeta-package').
##
## Attache Paket: 'dplyr'
## Die folgenden Objekte sind maskiert von 'package:formr':
##
## first, last
## Die folgenden Objekte sind maskiert von 'package:stats':
##
## filter, lag
## Die folgenden Objekte sind maskiert von 'package:base':
##
## intersect, setdiff, setequal, union
library(stringr)
library(tidyr)
library(knitr)
library(countrycode)
apatheme = theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
axis.line = element_line(),
legend.title = element_blank(),
plot.title = element_text(hjust = 0.5))
Load selected data based on 03_codebook
data_included_documented <- data_included_documented %>%
mutate(region1 = countrycode(country,
origin = "country.name",
destination = "region"),
region1 = ifelse(country == "Micronesia",
"East Asia and Pacific",
region1),
region2 = countrycode(country,
origin = "country.name",
destination = "continent"),
region2 = ifelse(country == "Micronesia",
"Oceania",
region2))
## Warning: There were 2 warnings in `mutate()`.
## The first warning was:
## ℹ In argument: `region1 = countrycode(country, origin = "country.name",
## destination = "region")`.
## Caused by warning:
## ! Some values were not matched unambiguously: Micronesia
## ℹ Run `dplyr::last_dplyr_warnings()` to see the 1 remaining warning.
##
## East Asia & Pacific East Asia and Pacific
## 674 1
## Europe & Central Asia Latin America & Caribbean
## 7441 3325
## Middle East & North Africa North America
## 90 1592
## South Asia Sub-Saharan Africa
## 59 75
##
## Africa Americas Asia Europe Oceania
## 108 4917 645 7417 170
data_included_documented = data_included_documented %>%
mutate(region_final = ifelse(region2 == "Africa", "Africa",
ifelse(region2 == "Asia", "Asia",
ifelse(region2 == "Europe", "Europe",
ifelse(region2 == "Oceania", "Oceania",
ifelse(region1 == "Latin America & Caribbean",
"Latin and South America",
ifelse(region1 == "North America",
"North America", NA)))))))
data_included_documented <- data_included_documented %>%
mutate(region_final = ifelse(country %in% c("Afghanistan", "Bahrain", "Iran",
"Iraq", "Israel", "Jordan",
"Kazakhstan", "Kuwait", "Kyrgyzstan",
"Lebanon", "Pakistan",
"Palestinian Territories", "Qatar",
"Saudi Arabia", "Syria",
"Turkey", "Turkmenistan",
"United Arab Emirates", "Indonesia"),
"Middle East and Central Asia", region_final),
region_final = ifelse(country %in% c("Armenia", "Burma",
"China",
"East Timor (see Timor-Leste)",
"Georgia", "Hong Kong", "India",
"Japan", "Malaysia", "Maldives",
"Nepal", "Philippines", "Singapore",
"South Korea", "Sri Lanka",
"Taiwan", "Thailand", "Vietnam"),
"South and East Asia", region_final))
x <- data_included_documented %>%
select(country, region_final) %>%
group_by(country, region_final) %>%
summarize(n = n()) %>%
arrange(region_final, country)
## `summarise()` has grouped output by 'country'. You can override using the
## `.groups` argument.
write.csv2(x, file = "country_regions.csv")
regions <- x %>%
group_by(region_final) %>%
summarize(countries = n(),
participants = sum(n))
regions
## # A tibble: 7 × 3
## region_final countries participants
## <chr> <int> <int>
## 1 Africa 26 108
## 2 Europe 41 7417
## 3 Latin and South America 33 3325
## 4 Middle East and Central Asia 19 103
## 5 North America 2 1592
## 6 Oceania 5 170
## 7 South and East Asia 18 542
We will include all regions with more than 500 participants. This allows us to show effect sizes for a diverse range of regions.
These regions include the following countries (n)
Europe included 41 countries: France (n = 2,013); Germany (n = 1,846); Italy (n = 968); Spain (n = 562); United Kingdom (n = 499); Denmark (n = 395); Switzerland (n = 280); Austria (n = 197); Russia (n = 155); Belgium (n = 102); Ireland (n = 59); Portugal (n = 51); Netherlands (n = 44); Finland (n = 31); Sweden (n = 27); Romania (n = 24); Ukraine (n = 21); Belarus (n = 13); Luxembourg (n = 13); Estonia (n = 12); Norway (n = 12); Czechia (n = 11); Bulgaria (n = 9); Hungary (n = 9); Latvia (n = 8); Poland (n = 7); Andorra (n = 6); Bosnia and Herzegovina (n = 6); Croatia (n = 6); Iceland (n = 5); Serbia (n = 5); Greece (n = 4); Lithuania (n = 3); Slovakia (n = 3); Slovenia (n = 3); Albania (n = 2); Malta (n = 2); Liechtenstein (n = 1); Macedonia (n = 1); Monaco (n = 1); and Montenegro (n = 1).
Latin and South America included 33 countries: Mexico (n = 1157); Brazil (n = 806); Colombia (n = 387); Argentina (n = 217); Chile (n = 154); Peru (n = 119); Ecuador (n = 102); Venezuela (n = 67); Guatemala (n = 61); Costa Rica (n = 47); Dominican Republic (n = 41); El Salvador (n = 26); Uruguay (n = 24); Bolivia (n = 23); Honduras (n = 18); Nicaragua (n = 15); Panama (n = 15); Paraguay (n = 11); Trinidad and Tobago (n = 8); Jamaica (n = 6); Haiti (n = 4); Guyana (n = 3); Antigua and Barbuda (n = 2); Dominica (n = 2); Saint Lucia (n = 2); Aruba (n = 1); Bahamas (n = 1); Barbados (n = 1); Belize (n = 1); Cuba (n = 1); Grenada (n = 1); Saint Vincent and the Grenadines (n = 1); and Sint Maarten (n = 1).
North America included 2 countries: United States of America (n = 1254) and Canada (n = 338).
South and East Asia included 18 countries: Japan (n = 290); China (n = 90); India (n = 45); Philippines (n = 36); Singapore (n = 26); Malaysia (n = 17); Hong Kong (n = 8); Taiwan (n = 7); South Korea (n = 5); Thailand (n = 4); Georgia (n = 3); Sri Lanka (n = 3); Armenia (n = 2); Vietnam (n = 2); Burma (n = 1); East Timor (n = 1); Maldives (n = 1); and Nepal (n = 1).
Oceania included 5 countries: Australia (n = 133); New Zealand (n = 34); Fiji (n = 1); Marshall Islands (n = 1); and Micronesia (n = 1).
Africa included 26 countries: South Africa (n = 29); Morocco (n = 16); Algeria (n = 7); Tunisia (n = 7); Kenya (n = 6); Nigeria (n = 6); Senegal (n = 5); Namibia (n = 4); Cameroon (n = 3); Egypt (n = 3); Ghana (n = 3); Benin (n = 2); Central African Republic (n = 2); Mali (n = 2); Mauritius (n = 2); Botswana (n = 1); Cote d’Ivoire (n = 1); Ethiopia (n = 1); Guinea-Bissau (n = 1); Madagascar (n = 1); Mauritania (n = 1); South Sudan (n = 1); Swaziland (n = 1); Tanzania (n = 1); Uganda (n = 1); and Zimbabwe (n = 1).
Middle East and Central Asia included 19 countries: Indonesia (n = 18); United Arab Emirates (n = 14); Israel (n = 13); Kazakhstan (n = 9); Pakistan (n = 8); Turkey (n = 8); Iran (n = 7); Saudi Arabia (n = 6); Bahrain (n = 3); Lebanon (n = 3); Jordan (n = 2); Kyrgyzstan (n = 2); Palestinian Territories (n = 2); Qatar (n = 2); Turkmenistan (n = 2); Afghanistan (n = 1); Iraq (n = 1); Kuwait (n = 1); and Syria (n = 1).
We investigated how effects of political orientation on partner preferences differed between four different regions. Namely, these were Europe (n = 7,417), Latin and South America (n = 3,325), North America (n = 1,592), and South and East Asia (n = 542). We could not include Oceania (n = 170), Africa (n = 108), and Middle East and Central Asia (n = 103) because sample sizes were too small (n < 500) to reach any conclusions.
regions = regions %>% filter(participants > 500)
data_included_documented_reg = data_included_documented %>%
filter(region_final %in% regions$region_final)
regions_reg =
data_included_documented_reg %>%
select(region_final, country) %>%
table() %>%
as.data.frame() %>%
filter(Freq != 0) %>%
arrange(-Freq)
regions_reg
## # A tibble: 94 × 3
## region_final country Freq
## <fct> <fct> <int>
## 1 Europe France 2013
## 2 Europe Germany 1846
## 3 North America United States of America 1254
## 4 Latin and South America Mexico 1157
## 5 Europe Italy 968
## 6 Latin and South America Brazil 806
## 7 Europe Spain 562
## 8 Europe United Kingdom 499
## 9 Europe Denmark 395
## 10 Latin and South America Colombia 387
## # ℹ 84 more rows
data_included_documented_reg_wide = data_included_documented_reg %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(pref_politicalsim, Europe, 'South and East Asia', 'Latin and South America', 'North America')
models_pref_politicalsim = data_included_documented_reg_wide %>%
select(-pref_politicalsim) %>%
map(~lm(scale(data_included_documented_reg_wide$pref_politicalsim) ~ scale(.x),
data = data_included_documented_reg_wide)) %>%
map(lm.beta)
models_pref_politicalsim_lin_coef = models_pref_politicalsim %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname == "scale(.x)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_politicalsim_lin_se = models_pref_politicalsim %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_pref_politicalsim_lin_analyses = left_join(models_pref_politicalsim_lin_coef,
models_pref_politicalsim_lin_se,
by = "name") %>%
mutate(outcome = "H2a) Prefered Political Similarity - Linear Effect")
countries_reg =
data_included_documented_reg %>%
filter(!is.na(pref_politicalsim)) %>%
select(region_final) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_politicalsim_lin_analyses$n = countries_reg$Freq
data_included_documented_reg %>% filter(!is.na(pref_politicalsim)) %>% nrow()
## [1] 12574
model = mvmeta(mean ~ 1, data = models_pref_politicalsim_lin_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_politicalsim_lin_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) -0.1146 0.0087 -13.1769 0.0000 -0.1316 -0.0975 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 48.8327 (df = 3), p-value = 0.0000
## I-square statistic = 93.9%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -12.6385 27.2770 26.6633
data_included_documented_reg_wide_reg1 = data_included_documented_reg %>%
dplyr::filter(political_orientation <= 3) %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(pref_politicalsim, Europe, 'South and East Asia', 'Latin and South America', 'North America')
models_pref_politicalsim_reg1 = data_included_documented_reg_wide_reg1 %>%
select(-pref_politicalsim) %>%
map(~lm(scale(data_included_documented_reg_wide_reg1$pref_politicalsim) ~
scale(.x),
data = data_included_documented_reg_wide_reg1)) %>%
map(lm.beta)
models_pref_politicalsim_quad_coef_reg1 = models_pref_politicalsim_reg1 %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname == "scale(.x)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_politicalsim_quad_se_reg1 = models_pref_politicalsim_reg1 %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_pref_politicalsim_quad_analyses_reg1 = left_join(models_pref_politicalsim_quad_coef_reg1,
models_pref_politicalsim_quad_se_reg1,
by = "name") %>%
mutate(outcome = "H2a(1)) Preferred Political Similarity - Quadratic Effect Regression 1")
models_pref_politicalsim_quad_analyses_reg1$n = countries_reg$Freq
data_included_documented_reg %>% filter(political_orientation <= 3, !is.na(pref_politicalsim)) %>% nrow()
## [1] 10318
model = mvmeta(mean ~ 1, data = models_pref_politicalsim_quad_analyses_reg1, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_politicalsim_quad_analyses_reg1,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) -0.2573 0.0093 -27.5273 0.0000 -0.2757 -0.2390 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 12.6538 (df = 3), p-value = 0.0054
## I-square statistic = 76.3%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 5.1275 -8.2551 -8.8688
data_included_documented_reg_wide_reg2 = data_included_documented_reg %>%
dplyr::filter(political_orientation >= 3) %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(pref_politicalsim, Europe, 'South and East Asia', 'Latin and South America', 'North America')
models_pref_politicalsim_reg2 = data_included_documented_reg_wide_reg2 %>%
select(-pref_politicalsim) %>%
map(~lm(scale(data_included_documented_reg_wide_reg2$pref_politicalsim) ~
scale(.x),
data = data_included_documented_reg_wide_reg2)) %>%
map(lm.beta)
models_pref_politicalsim_quad_coef_reg2 = models_pref_politicalsim_reg2 %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname == "scale(.x)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_politicalsim_quad_se_reg2 = models_pref_politicalsim_reg1 %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_pref_politicalsim_quad_analyses_reg2 = left_join(models_pref_politicalsim_quad_coef_reg2,
models_pref_politicalsim_quad_se_reg2,
by = "name") %>%
mutate(outcome = "H2a(1)) Preferred Political Similarity - Quadratic Effect Regression 2")
models_pref_politicalsim_quad_analyses_reg2$n = countries_reg$Freq
data_included_documented_reg %>% filter(political_orientation >= 3, !is.na(pref_politicalsim)) %>% nrow()
## [1] 7139
model = mvmeta(mean ~ 1, data = models_pref_politicalsim_quad_analyses_reg2, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_politicalsim_quad_analyses_reg2,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.2017 0.0093 21.5717 0.0000 0.1833 0.2200 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 32.0230 (df = 3), p-value = 0.0000
## I-square statistic = 90.6%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -4.5570 11.1141 10.5004
data_included_documented_reg_wide = data_included_documented_reg %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(pref_ethnicalsim, Europe, 'South and East Asia', 'Latin and South America', 'North America')
models_pref_ethnicalsim = data_included_documented_reg_wide %>%
select(-pref_ethnicalsim) %>%
map(~lm(data_included_documented_reg_wide$pref_ethnicalsim ~ .x,
data = data_included_documented_reg_wide)) %>%
map(lm.beta)
models_pref_ethnicalsim_coef = models_pref_ethnicalsim %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_ethnicalsim_se = models_pref_ethnicalsim %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_pref_ethnicalsim_analyses = left_join(models_pref_ethnicalsim_coef,
models_pref_ethnicalsim_se,
by = "name") %>%
mutate(outcome = "H2b) Preferred Ethnic Similarity")
countries_reg =
data_included_documented_reg %>%
filter(!is.na(pref_ethnicalsim)) %>%
select(region_final) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_ethnicalsim_analyses$n = countries_reg$Freq
sum(models_pref_ethnicalsim_analyses$n)
## [1] 8394
model = mvmeta(mean ~ 1, data = models_pref_ethnicalsim_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_ethnicalsim_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.1553 0.0118 13.1363 0.0000 0.1321 0.1785 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 22.8516 (df = 3), p-value = 0.0000
## I-square statistic = 86.9%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -1.1326 4.2652 3.6515
data_included_documented_reg_wide = data_included_documented_reg %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(pref_religioussim, Europe, 'South and East Asia', 'Latin and South America', 'North America')
models_pref_religioussim = data_included_documented_reg_wide %>%
select(-pref_religioussim) %>%
map(~lm(data_included_documented_reg_wide$pref_religioussim ~ .x,
data = data_included_documented_reg_wide)) %>%
map(lm.beta)
models_pref_religioussim_coef = models_pref_religioussim %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_religioussim_se = models_pref_religioussim %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_pref_religioussim_analyses = left_join(models_pref_religioussim_coef,
models_pref_religioussim_se,
by = "name") %>%
mutate(outcome = "H2c) Preferred Religious Similarity")
countries_reg =
data_included_documented_reg %>%
filter(!is.na(pref_religioussim)) %>%
select(region_final) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_religioussim_analyses$n = countries_reg$Freq
sum(models_pref_religioussim_analyses$n)
## [1] 12561
model = mvmeta(mean ~ 1, data = models_pref_religioussim_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_religioussim_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.1197 0.0143 8.3861 0.0000 0.0917 0.1476 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 6.9915 (df = 3), p-value = 0.0722
## I-square statistic = 57.1%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 6.1681 -10.3362 -10.9499
data_included_documented_reg_wide = data_included_documented_reg %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(pref_level_financially_secure_successful_ambitious, Europe, 'South and East Asia', 'Latin and South America',
'North America')
models_pref_level_financially_secure_successful_ambitious = data_included_documented_reg_wide %>%
select(-pref_level_financially_secure_successful_ambitious) %>%
map(~lm(data_included_documented_reg_wide$pref_level_financially_secure_successful_ambitious ~ .x,
data = data_included_documented_reg_wide)) %>%
map(lm.beta)
models_pref_level_financially_secure_successful_ambitious_coef = models_pref_level_financially_secure_successful_ambitious %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_level_financially_secure_successful_ambitious_se = models_pref_level_financially_secure_successful_ambitious %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_pref_level_financially_secure_successful_ambitious_analyses = left_join(models_pref_level_financially_secure_successful_ambitious_coef,
models_pref_level_financially_secure_successful_ambitious_se,
by = "name") %>%
mutate(outcome = "H3a) Financial Security-Successfulness")
countries_reg =
data_included_documented_reg %>%
filter(!is.na(pref_level_financially_secure_successful_ambitious)) %>%
select(region_final) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_level_financially_secure_successful_ambitious_analyses$n = countries_reg$Freq
sum(models_pref_level_financially_secure_successful_ambitious_analyses$n)
## [1] 12183
model = mvmeta(mean ~ 1, data = models_pref_level_financially_secure_successful_ambitious_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_level_financially_secure_successful_ambitious_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.1402 0.0058 24.2049 0.0000 0.1288 0.1516 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 20.0226 (df = 3), p-value = 0.0002
## I-square statistic = 85.0%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 3.2386 -4.4772 -5.0909
data_included_documented_reg_wide = data_included_documented_reg %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(pref_level_confident_assertive, Europe, 'South and East Asia', 'Latin and South America', 'North America')
models_pref_level_confident_assertive = data_included_documented_reg_wide %>%
select(-pref_level_confident_assertive) %>%
map(~lm(data_included_documented_reg_wide$pref_level_confident_assertive ~ .x,
data = data_included_documented_reg_wide)) %>%
map(lm.beta)
models_pref_level_confident_assertive_coef = models_pref_level_confident_assertive %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_level_confident_assertive_se = models_pref_level_confident_assertive %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_pref_level_confident_assertive_analyses = left_join(models_pref_level_confident_assertive_coef,
models_pref_level_confident_assertive_se,
by = "name") %>%
mutate(outcome = "H3d) Confidence-Assertiveness")
countries_reg =
data_included_documented_reg %>%
filter(!is.na(pref_level_confident_assertive)) %>%
select(region_final) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_level_confident_assertive_analyses$n = countries_reg$Freq
sum(models_pref_level_confident_assertive_analyses$n)
## [1] 12325
model = mvmeta(mean ~ 1, data = models_pref_level_confident_assertive_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_level_confident_assertive_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0838 0.0052 16.0304 0.0000 0.0736 0.0941 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 39.8036 (df = 3), p-value = 0.0000
## I-square statistic = 92.5%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -6.2581 14.5161 13.9024
data_included_documented_reg_wide = data_included_documented_reg %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(pref_level_intelligence_educated, Europe, 'South and East Asia', 'Latin and South America', 'North America')
models_pref_level_intelligence_educated = data_included_documented_reg_wide %>%
select(-pref_level_intelligence_educated) %>%
map(~lm(data_included_documented_reg_wide$pref_level_intelligence_educated ~ .x,
data = data_included_documented_reg_wide)) %>%
map(lm.beta)
models_pref_level_intelligence_educated_coef = models_pref_level_intelligence_educated %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_level_intelligence_educated_se = models_pref_level_intelligence_educated %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_pref_level_intelligence_educated_analyses = left_join(models_pref_level_intelligence_educated_coef,
models_pref_level_intelligence_educated_se,
by = "name") %>%
mutate(outcome = "H3e) Education-Intelligence")
countries_reg =
data_included_documented_reg %>%
filter(!is.na(pref_level_intelligence_educated)) %>%
select(region_final) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_level_intelligence_educated_analyses$n = countries_reg$Freq
sum(models_pref_level_intelligence_educated_analyses$n)
## [1] 12354
model = mvmeta(mean ~ 1, data = models_pref_level_intelligence_educated_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_level_intelligence_educated_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0316 0.0053 5.9355 0.0000 0.0211 0.0420 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 57.7990 (df = 3), p-value = 0.0000
## I-square statistic = 94.8%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -15.3288 32.6576 32.0439
data_included_documented_reg_wide = data_included_documented_reg %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(pref_level_kind_supportive, Europe, 'South and East Asia', 'Latin and South America', 'North America')
models_pref_level_kind_supportive = data_included_documented_reg_wide %>%
select(-pref_level_kind_supportive) %>%
map(~lm(data_included_documented_reg_wide$pref_level_kind_supportive ~ .x,
data = data_included_documented_reg_wide)) %>%
map(lm.beta)
models_pref_level_kind_supportive_coef = models_pref_level_kind_supportive %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_level_kind_supportive_se = models_pref_level_kind_supportive %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_pref_level_kind_supportive_analyses = left_join(models_pref_level_kind_supportive_coef,
models_pref_level_kind_supportive_se,
by = "name") %>%
mutate(outcome = "H3b) Kindness-Supportiveness")
countries_reg =
data_included_documented_reg %>%
filter(!is.na(pref_level_kind_supportive)) %>%
select(region_final) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_level_kind_supportive_analyses$n = countries_reg$Freq
sum(models_pref_level_kind_supportive_analyses$n)
## [1] 12359
model = mvmeta(mean ~ 1, data = models_pref_level_kind_supportive_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_level_kind_supportive_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0275 0.0046 6.0045 0.0000 0.0186 0.0365 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 22.5497 (df = 3), p-value = 0.0001
## I-square statistic = 86.7%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 2.8106 -3.6212 -4.2349
data_included_documented_reg_wide = data_included_documented_reg %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(pref_level_attractiveness, Europe, 'South and East Asia', 'Latin and South America', 'North America')
models_pref_level_attractiveness = data_included_documented_reg_wide %>%
select(-pref_level_attractiveness) %>%
map(~lm(data_included_documented_reg_wide$pref_level_attractiveness ~ .x,
data = data_included_documented_reg_wide)) %>%
map(lm.beta)
models_pref_level_attractiveness_coef = models_pref_level_attractiveness %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_level_attractiveness_se = models_pref_level_attractiveness %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_pref_level_attractiveness_analyses = left_join(models_pref_level_attractiveness_coef,
models_pref_level_attractiveness_se,
by = "name") %>%
mutate(outcome = "H3c) Attractiveness")
countries_reg =
data_included_documented_reg %>%
filter(!is.na(pref_level_attractiveness)) %>%
select(region_final) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_level_attractiveness_analyses$n = countries_reg$Freq
sum(models_pref_level_attractiveness_analyses$n)
## [1] 12160
model = mvmeta(mean ~ 1, data = models_pref_level_attractiveness_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_level_attractiveness_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0669 0.0061 10.9552 0.0000 0.0549 0.0788 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 28.1503 (df = 3), p-value = 0.0000
## I-square statistic = 89.3%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -1.0840 4.1680 3.5543
data_included_documented_reg_wide = data_included_documented_reg %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(imp_age, Europe, 'South and East Asia', 'Latin and South America', 'North America')
models_imp_age = data_included_documented_reg_wide %>%
select(-imp_age) %>%
map(~lm(data_included_documented_reg_wide$imp_age ~ .x,
data = data_included_documented_reg_wide)) %>%
map(lm.beta)
models_imp_age_coef = models_imp_age %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_imp_age_se = models_imp_age %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_imp_age_analyses = left_join(models_imp_age_coef,
models_imp_age_se,
by = "name") %>%
mutate(outcome = "H4a(1)) Ideal Age (Importance)")
countries_reg =
data_included_documented_reg %>%
filter(!is.na(imp_age)) %>%
select(region_final) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_imp_age_analyses$n = countries_reg$Freq
sum(models_imp_age_analyses$n)
## [1] 12735
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_imp_age_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0855 0.0092 9.2870 0.0000 0.0675 0.1036 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 3.4451 (df = 3), p-value = 0.3279
## I-square statistic = 12.9%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 9.6023 -17.2046 -17.8183
data_included_documented_reg_wide = data_included_documented_reg %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(ideal_age_rel, Europe, 'South and East Asia', 'Latin and South America', 'North America')
models_ideal_age_rel = data_included_documented_reg_wide %>%
select(-ideal_age_rel) %>%
map(~lm(data_included_documented_reg_wide$ideal_age_rel ~ .x,
data = data_included_documented_reg_wide)) %>%
map(lm.beta)
models_ideal_age_rel_coef = models_ideal_age_rel %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_ideal_age_rel_se = models_ideal_age_rel %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_ideal_age_rel_analyses = left_join(models_ideal_age_rel_coef,
models_ideal_age_rel_se,
by = "name") %>%
mutate(outcome = "H4a(2)) Ideal Age (Level)")
countries_reg =
data_included_documented_reg %>%
filter(!is.na(ideal_age_rel)) %>%
select(region_final) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_ideal_age_rel_analyses$n = countries_reg$Freq
sum(models_ideal_age_rel_analyses$n)
## [1] 11699
model = mvmeta(mean ~ 1, data = models_ideal_age_rel_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_ideal_age_rel_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0092 0.0203 0.4541 0.6497 -0.0306 0.0491
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 0.4564 (df = 3), p-value = 0.9284
## I-square statistic = 1.0%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 7.8754 -13.7507 -14.3645
data_included_documented_reg_wide = data_included_documented_reg %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(imp_height, Europe, 'South and East Asia', 'Latin and South America', 'North America')
models_imp_height = data_included_documented_reg_wide %>%
select(-imp_height) %>%
map(~lm(data_included_documented_reg_wide$imp_height ~ .x,
data = data_included_documented_reg_wide)) %>%
map(lm.beta)
models_imp_height_coef = models_imp_height %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_imp_height_se = models_imp_height %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_imp_height_analyses = left_join(models_imp_height_coef,
models_imp_height_se,
by = "name") %>%
mutate(outcome = "H4b(1)) Ideal Height (Importance)")
countries_reg =
data_included_documented_reg %>%
filter(!is.na(imp_height)) %>%
select(region_final) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_imp_height_analyses$n = countries_reg$Freq
sum(models_imp_height_analyses$n)
## [1] 12650
model = mvmeta(mean ~ 1, data = models_imp_height_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_imp_height_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.1151 0.0097 11.9081 0.0000 0.0962 0.1341 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 12.3750 (df = 3), p-value = 0.0062
## I-square statistic = 75.8%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 4.9179 -7.8358 -8.4495
data_included_documented_reg_wide = data_included_documented_reg %>%
pivot_wider(names_from = region_final, values_from = political_orientation) %>%
select(ideal_height, Europe, 'South and East Asia', 'Latin and South America', 'North America')
models_ideal_height = data_included_documented_reg_wide %>%
select(-ideal_height) %>%
map(~lm(data_included_documented_reg_wide$ideal_height ~ .x,
data = data_included_documented_reg_wide)) %>%
map(lm.beta)
models_ideal_height_coef = models_ideal_height %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_ideal_height_se = models_ideal_height %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "South and East Asia",
"South.and.East.Asia",
ifelse(name == "Latin and South America",
"Latin.and.South.America",
ifelse(name == "North America",
"North.America",
name))))
models_ideal_height_analyses = left_join(models_ideal_height_coef,
models_ideal_height_se,
by = "name") %>%
mutate(outcome = "H4b(2)) Ideal Height (Level)")
countries_reg =
data_included_documented_reg %>%
filter(!is.na(ideal_height)) %>%
select(region_final) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_ideal_height_analyses$n = countries_reg$Freq
sum(models_ideal_height_analyses$n)
## [1] 12158
model = mvmeta(mean ~ 1, data = models_ideal_height_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_ideal_height_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0110 0.0029 3.7530 0.0002 0.0053 0.0168 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 61.3516 (df = 3), p-value = 0.0000
## I-square statistic = 95.1%
##
## 4 studies, 4 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -14.7521 31.5043 30.8906