## Lade nötiges Paket: carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
## Lade nötiges Paket: Matrix
##
## Attache Paket: 'sjstats'
## Die folgenden Objekte sind maskiert von 'package:effectsize':
##
## cohens_f, cramers_v, phi
##
## Attache Paket: 'lmerTest'
## Das folgende Objekt ist maskiert 'package:lme4':
##
## lmer
## Das folgende Objekt ist maskiert 'package:stats':
##
## step
##
## Attache Paket: 'tidyr'
## Die folgenden Objekte sind maskiert von 'package:Matrix':
##
## expand, pack, unpack
library(ggpubr)
library(RColorBrewer)
library(coefplot)
library(tibble)
library(purrr) # for running multiple regression
library(broom)
##
## Attache Paket: 'broom'
## Das folgende Objekt ist maskiert 'package:sjstats':
##
## bootstrap
## This is mvmeta 1.0.3. For an overview type: help('mvmeta-package').
##
## Attache Paket: 'dplyr'
## Die folgenden Objekte sind maskiert von 'package:formr':
##
## first, last
## Die folgenden Objekte sind maskiert von 'package:stats':
##
## filter, lag
## Die folgenden Objekte sind maskiert von 'package:base':
##
## intersect, setdiff, setequal, union
Load selected data based on 03_codebook
countries = as.data.frame(table(data_included_documented$country)) %>%
arrange(-Freq)
kable(countries)
Var1 | Freq |
---|---|
France | 2013 |
Germany | 1846 |
United States of America | 1254 |
Mexico | 1157 |
Italy | 968 |
Brazil | 806 |
Spain | 562 |
United Kingdom | 499 |
Denmark | 395 |
Colombia | 387 |
Canada | 338 |
Japan | 290 |
Switzerland | 280 |
Argentina | 217 |
Austria | 197 |
Russia | 155 |
Chile | 154 |
Australia | 133 |
Peru | 119 |
Belgium | 102 |
Ecuador | 102 |
China | 90 |
Venezuela | 67 |
Guatemala | 61 |
Ireland | 59 |
Portugal | 51 |
Costa Rica | 47 |
India | 45 |
Netherlands | 44 |
Dominican Republic | 41 |
Philippines | 36 |
New Zealand | 34 |
Finland | 31 |
South Africa | 29 |
Sweden | 27 |
El Salvador | 26 |
Singapore | 26 |
Romania | 24 |
Uruguay | 24 |
Bolivia | 23 |
Ukraine | 21 |
Honduras | 18 |
Indonesia | 18 |
Malaysia | 17 |
Morocco | 16 |
Nicaragua | 15 |
Panama | 15 |
United Arab Emirates | 14 |
Belarus | 13 |
Israel | 13 |
Luxembourg | 13 |
Estonia | 12 |
Norway | 12 |
Czechia | 11 |
Paraguay | 11 |
Bulgaria | 9 |
Hungary | 9 |
Kazakhstan | 9 |
Hong Kong | 8 |
Latvia | 8 |
Pakistan | 8 |
Trinidad and Tobago | 8 |
Turkey | 8 |
Algeria | 7 |
Iran | 7 |
Poland | 7 |
Taiwan | 7 |
Tunisia | 7 |
Andorra | 6 |
Bosnia and Herzegovina | 6 |
Croatia | 6 |
Jamaica | 6 |
Kenya | 6 |
Nigeria | 6 |
Saudi Arabia | 6 |
Iceland | 5 |
Senegal | 5 |
Serbia | 5 |
South Korea | 5 |
Greece | 4 |
Haiti | 4 |
Namibia | 4 |
Thailand | 4 |
Bahrain | 3 |
Cameroon | 3 |
Egypt | 3 |
Georgia | 3 |
Ghana | 3 |
Guyana | 3 |
Lebanon | 3 |
Lithuania | 3 |
Slovakia | 3 |
Slovenia | 3 |
Sri Lanka | 3 |
Albania | 2 |
Antigua and Barbuda | 2 |
Armenia | 2 |
Benin | 2 |
Central African Republic | 2 |
Dominica | 2 |
Jordan | 2 |
Kyrgyzstan | 2 |
Mali | 2 |
Malta | 2 |
Mauritius | 2 |
Palestinian Territories | 2 |
Qatar | 2 |
Saint Lucia | 2 |
Turkmenistan | 2 |
Vietnam | 2 |
Afghanistan | 1 |
Aruba | 1 |
Bahamas, The | 1 |
Barbados | 1 |
Belize | 1 |
Botswana | 1 |
Burma | 1 |
Cote d’Ivoire | 1 |
Cuba | 1 |
East Timor (see Timor-Leste) | 1 |
Ethiopia | 1 |
Fiji | 1 |
Grenada | 1 |
Guinea-Bissau | 1 |
Iraq | 1 |
Kuwait | 1 |
Liechtenstein | 1 |
Macedonia | 1 |
Madagascar | 1 |
Maldives | 1 |
Marshall Islands | 1 |
Mauritania | 1 |
Micronesia | 1 |
Monaco | 1 |
Montenegro | 1 |
Nepal | 1 |
Saint Vincent and the Grenadines | 1 |
Sint Maarten | 1 |
South Sudan | 1 |
Swaziland | 1 |
Syria | 1 |
Tanzania | 1 |
Uganda | 1 |
Zimbabwe | 1 |
We will include all countries with more than 500 participants. This allows us to show effect sizes for a diverse range of countries. Diversity of countries is indicated by:
Sample sizes of other countries are too small (n < 500) to reach any conclusions.
seven_countries = countries %>% filter(Freq > 500)
data_included_documented_rescon = data_included_documented %>%
filter(country %in% seven_countries$Var1)
countries_rescon =
data_included_documented_rescon %>%
select(country) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
countries_rescon
## # A tibble: 7 × 2
## country Freq
## <fct> <int>
## 1 France 2013
## 2 Germany 1846
## 3 United States of America 1254
## 4 Mexico 1157
## 5 Italy 968
## 6 Brazil 806
## 7 Spain 562
data_included_documented_rescon_wide = data_included_documented_rescon %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(pref_politicalsim, France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_pref_politicalsim = data_included_documented_rescon_wide %>%
select(-pref_politicalsim) %>%
map(~lm(scale(data_included_documented_rescon_wide$pref_politicalsim) ~ scale(.x),
data = data_included_documented_rescon_wide)) %>%
map(lm.beta)
models_pref_politicalsim_lin_coef = models_pref_politicalsim %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname == "scale(.x)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_politicalsim_lin_se = models_pref_politicalsim %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_pref_politicalsim_lin_analyses = left_join(models_pref_politicalsim_lin_coef,
models_pref_politicalsim_lin_se,
by = "name") %>%
mutate(outcome = "H2a) Prefered Political Similarity - Linear Effect")
countries_rescon =
data_included_documented_rescon %>%
filter(!is.na(pref_politicalsim)) %>%
select(country) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_politicalsim_lin_analyses$n = countries_rescon$Freq
data_included_documented_rescon %>% filter(!is.na(pref_politicalsim)) %>% nrow()
## [1] 8405
model = mvmeta(mean ~ 1, data = models_pref_politicalsim_lin_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_politicalsim_lin_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) -0.1144 0.0103 -11.0926 0.0000 -0.1346 -0.0942 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 73.6827 (df = 6), p-value = 0.0000
## I-square statistic = 91.9%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -18.4545 38.9091 38.8550
data_included_documented_rescon_wide_reg1 = data_included_documented_rescon %>%
dplyr::filter(political_orientation <= 3) %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(pref_politicalsim, France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_pref_politicalsim_reg1 = data_included_documented_rescon_wide_reg1 %>%
select(-pref_politicalsim) %>%
map(~lm(scale(data_included_documented_rescon_wide_reg1$pref_politicalsim) ~
scale(.x),
data = data_included_documented_rescon_wide_reg1)) %>%
map(lm.beta)
models_pref_politicalsim_quad_coef_reg1 = models_pref_politicalsim_reg1 %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname == "scale(.x)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_politicalsim_quad_se_reg1 = models_pref_politicalsim_reg1 %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_pref_politicalsim_quad_analyses_reg1 = left_join(models_pref_politicalsim_quad_coef_reg1,
models_pref_politicalsim_quad_se_reg1,
by = "name") %>%
mutate(outcome = "H2a(1)) Preferred Political Similarity - Quadratic Effect Regression 1")
models_pref_politicalsim_quad_analyses_reg1$n = countries_rescon$Freq
data_included_documented_rescon %>% filter(political_orientation <= 3, !is.na(pref_politicalsim)) %>% nrow()
## [1] 6907
model = mvmeta(mean ~ 1, data = models_pref_politicalsim_quad_analyses_reg1, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_politicalsim_quad_analyses_reg1,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) -0.2570 0.0111 -23.2080 0.0000 -0.2787 -0.2353 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 43.9753 (df = 6), p-value = 0.0000
## I-square statistic = 86.4%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -4.1612 10.3223 10.2682
data_included_documented_rescon_wide_reg2 = data_included_documented_rescon %>%
dplyr::filter(political_orientation >= 3) %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(pref_politicalsim, France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_pref_politicalsim_reg2 = data_included_documented_rescon_wide_reg2 %>%
select(-pref_politicalsim) %>%
map(~lm(scale(data_included_documented_rescon_wide_reg2$pref_politicalsim) ~
scale(.x),
data = data_included_documented_rescon_wide_reg2)) %>%
map(lm.beta)
models_pref_politicalsim_quad_coef_reg2 = models_pref_politicalsim_reg2 %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname == "scale(.x)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_politicalsim_quad_se_reg2 = models_pref_politicalsim_reg1 %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_pref_politicalsim_quad_analyses_reg2 = left_join(models_pref_politicalsim_quad_coef_reg2,
models_pref_politicalsim_quad_se_reg2,
by = "name") %>%
mutate(outcome = "H2a(1)) Preferred Political Similarity - Quadratic Effect Regression 2")
models_pref_politicalsim_quad_analyses_reg2$n = countries_rescon$Freq
data_included_documented_rescon %>% filter(political_orientation >= 3, !is.na(pref_politicalsim)) %>% nrow()
## [1] 4643
model = mvmeta(mean ~ 1, data = models_pref_politicalsim_quad_analyses_reg2, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_politicalsim_quad_analyses_reg2,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.1877 0.0111 16.9462 0.0000 0.1660 0.2094 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 99.7921 (df = 6), p-value = 0.0000
## I-square statistic = 94.0%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -32.0696 66.1392 66.0851
data_included_documented_rescon_wide = data_included_documented_rescon %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(pref_ethnicalsim, France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_pref_ethnicalsim = data_included_documented_rescon_wide %>%
select(-pref_ethnicalsim) %>%
map(~lm(data_included_documented_rescon_wide$pref_ethnicalsim ~ .x,
data = data_included_documented_rescon_wide)) %>%
map(lm.beta)
models_pref_ethnicalsim_coef = models_pref_ethnicalsim %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_ethnicalsim_se = models_pref_ethnicalsim %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_pref_ethnicalsim_analyses = left_join(models_pref_ethnicalsim_coef,
models_pref_ethnicalsim_se,
by = "name") %>%
mutate(outcome = "H2b) Preferred Ethnic Similarity")
countries_rescon =
data_included_documented_rescon %>%
filter(!is.na(pref_ethnicalsim)) %>%
select(country) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_ethnicalsim_analyses$n = countries_rescon$Freq
sum(models_pref_ethnicalsim_analyses$n)
## [1] 5680
model = mvmeta(mean ~ 1, data = models_pref_ethnicalsim_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_ethnicalsim_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.1573 0.0143 10.9657 0.0000 0.1291 0.1854 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 33.3460 (df = 6), p-value = 0.0000
## I-square statistic = 82.0%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -0.4393 2.8786 2.8245
data_included_documented_rescon_wide = data_included_documented_rescon %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(pref_religioussim, France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_pref_religioussim = data_included_documented_rescon_wide %>%
select(-pref_religioussim) %>%
map(~lm(data_included_documented_rescon_wide$pref_religioussim ~ .x,
data = data_included_documented_rescon_wide)) %>%
map(lm.beta)
models_pref_religioussim_coef = models_pref_religioussim %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_religioussim_se = models_pref_religioussim %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_pref_religioussim_analyses = left_join(models_pref_religioussim_coef,
models_pref_religioussim_se,
by = "name") %>%
mutate(outcome = "H2c) Preferred Religious Similarity")
countries_rescon =
data_included_documented_rescon %>%
filter(!is.na(pref_religioussim)) %>%
select(country) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_religioussim_analyses$n = countries_rescon$Freq
sum(models_pref_religioussim_analyses$n)
## [1] 8396
model = mvmeta(mean ~ 1, data = models_pref_religioussim_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_religioussim_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.1439 0.0171 8.4172 0.0000 0.1104 0.1773 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 15.7427 (df = 6), p-value = 0.0152
## I-square statistic = 61.9%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 7.2453 -12.4906 -12.5446
data_included_documented_rescon_wide = data_included_documented_rescon %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(pref_level_financially_secure_successful_ambitious, France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_pref_level_financially_secure_successful_ambitious = data_included_documented_rescon_wide %>%
select(-pref_level_financially_secure_successful_ambitious) %>%
map(~lm(data_included_documented_rescon_wide$pref_level_financially_secure_successful_ambitious ~ .x,
data = data_included_documented_rescon_wide)) %>%
map(lm.beta)
models_pref_level_financially_secure_successful_ambitious_coef = models_pref_level_financially_secure_successful_ambitious %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_level_financially_secure_successful_ambitious_se = models_pref_level_financially_secure_successful_ambitious %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_pref_level_financially_secure_successful_ambitious_analyses = left_join(models_pref_level_financially_secure_successful_ambitious_coef,
models_pref_level_financially_secure_successful_ambitious_se,
by = "name") %>%
mutate(outcome = "H3a) Financial Security-Successfulness")
countries_rescon =
data_included_documented_rescon %>%
filter(!is.na(pref_level_financially_secure_successful_ambitious)) %>%
select(country) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_level_financially_secure_successful_ambitious_analyses$n = countries_rescon$Freq
sum(models_pref_level_financially_secure_successful_ambitious_analyses$n)
## [1] 8139
model = mvmeta(mean ~ 1, data = models_pref_level_financially_secure_successful_ambitious_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_level_financially_secure_successful_ambitious_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.1426 0.0069 20.6251 0.0000 0.1291 0.1562 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 16.1524 (df = 6), p-value = 0.0130
## I-square statistic = 62.9%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 13.2641 -24.5282 -24.5823
data_included_documented_rescon_wide = data_included_documented_rescon %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(pref_level_confident_assertive , France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_pref_level_confident_assertive = data_included_documented_rescon_wide %>%
select(-pref_level_confident_assertive) %>%
map(~lm(data_included_documented_rescon_wide$pref_level_confident_assertive ~ .x,
data = data_included_documented_rescon_wide)) %>%
map(lm.beta)
models_pref_level_confident_assertive_coef = models_pref_level_confident_assertive %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_level_confident_assertive_se = models_pref_level_confident_assertive %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_pref_level_confident_assertive_analyses = left_join(models_pref_level_confident_assertive_coef,
models_pref_level_confident_assertive_se,
by = "name") %>%
mutate(outcome = "H3d) Confidence-Assertiveness")
countries_rescon =
data_included_documented_rescon %>%
filter(!is.na(pref_level_confident_assertive)) %>%
select(country) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_level_confident_assertive_analyses$n = countries_rescon$Freq
sum(models_pref_level_confident_assertive_analyses$n)
## [1] 8292
model = mvmeta(mean ~ 1, data = models_pref_level_confident_assertive_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_level_confident_assertive_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0734 0.0060 12.2476 0.0000 0.0617 0.0852 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 107.7961 (df = 6), p-value = 0.0000
## I-square statistic = 94.4%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -31.4557 64.9114 64.8573
data_included_documented_rescon_wide = data_included_documented_rescon %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(pref_level_intelligence_educated, France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_pref_level_intelligence_educated = data_included_documented_rescon_wide %>%
select(-pref_level_intelligence_educated) %>%
map(~lm(data_included_documented_rescon_wide$pref_level_intelligence_educated ~ .x,
data = data_included_documented_rescon_wide)) %>%
map(lm.beta)
models_pref_level_intelligence_educated_coef = models_pref_level_intelligence_educated %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_level_intelligence_educated_se = models_pref_level_intelligence_educated %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_pref_level_intelligence_educated_analyses = left_join(models_pref_level_intelligence_educated_coef,
models_pref_level_intelligence_educated_se,
by = "name") %>%
mutate(outcome = "H3e) Education-Intelligence")
countries_rescon =
data_included_documented_rescon %>%
filter(!is.na(pref_level_intelligence_educated)) %>%
select(country) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_level_intelligence_educated_analyses$n = countries_rescon$Freq
sum(models_pref_level_intelligence_educated_analyses$n)
## [1] 8280
model = mvmeta(mean ~ 1, data = models_pref_level_intelligence_educated_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_level_intelligence_educated_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0124 0.0062 1.9872 0.0469 0.0002 0.0246 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 93.7652 (df = 6), p-value = 0.0000
## I-square statistic = 93.6%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -24.7569 51.5138 51.4597
data_included_documented_rescon_wide = data_included_documented_rescon %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(pref_level_kind_supportive , France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_pref_level_kind_supportive = data_included_documented_rescon_wide %>%
select(-pref_level_kind_supportive) %>%
map(~lm(data_included_documented_rescon_wide$pref_level_kind_supportive ~ .x,
data = data_included_documented_rescon_wide)) %>%
map(lm.beta)
models_pref_level_kind_supportive_coef = models_pref_level_kind_supportive %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_level_kind_supportive_se = models_pref_level_kind_supportive %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_pref_level_kind_supportive_analyses = left_join(models_pref_level_kind_supportive_coef,
models_pref_level_kind_supportive_se,
by = "name") %>%
mutate(outcome = "H3b) Kindness-Supportiveness")
countries_rescon =
data_included_documented_rescon %>%
filter(!is.na(pref_level_kind_supportive)) %>%
select(country) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_level_kind_supportive_analyses$n = countries_rescon$Freq
sum(models_pref_level_kind_supportive_analyses$n)
## [1] 8261
model = mvmeta(mean ~ 1, data = models_pref_level_kind_supportive_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_level_kind_supportive_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0238 0.0055 4.3523 0.0000 0.0131 0.0345 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 36.0962 (df = 6), p-value = 0.0000
## I-square statistic = 83.4%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 4.9736 -7.9472 -8.0013
data_included_documented_rescon_wide = data_included_documented_rescon %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(pref_level_attractiveness , France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_pref_level_attractiveness = data_included_documented_rescon_wide %>%
select(-pref_level_attractiveness) %>%
map(~lm(data_included_documented_rescon_wide$pref_level_attractiveness ~ .x,
data = data_included_documented_rescon_wide)) %>%
map(lm.beta)
models_pref_level_attractiveness_coef = models_pref_level_attractiveness %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_pref_level_attractiveness_se = models_pref_level_attractiveness %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_pref_level_attractiveness_analyses = left_join(models_pref_level_attractiveness_coef,
models_pref_level_attractiveness_se,
by = "name") %>%
mutate(outcome = "H3c) Attractiveness")
countries_rescon =
data_included_documented_rescon %>%
filter(!is.na(pref_level_attractiveness)) %>%
select(country) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_pref_level_attractiveness_analyses$n = countries_rescon$Freq
sum(models_pref_level_attractiveness_analyses$n)
## [1] 8153
model = mvmeta(mean ~ 1, data = models_pref_level_attractiveness_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_pref_level_attractiveness_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0715 0.0073 9.7341 0.0000 0.0571 0.0859 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 22.7699 (df = 6), p-value = 0.0009
## I-square statistic = 73.6%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 9.5856 -17.1712 -17.2253
data_included_documented_rescon_wide = data_included_documented_rescon %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(imp_age, France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_imp_age = data_included_documented_rescon_wide %>%
select(-imp_age) %>%
map(~lm(data_included_documented_rescon_wide$imp_age ~ .x,
data = data_included_documented_rescon_wide)) %>%
map(lm.beta)
models_imp_age_coef = models_imp_age %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_imp_age_se = models_imp_age %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_imp_age_analyses = left_join(models_imp_age_coef,
models_imp_age_se,
by = "name") %>%
mutate(outcome = "H4a(1)) Ideal Age (Importance)")
countries_rescon =
data_included_documented_rescon %>%
filter(!is.na(imp_age)) %>%
select(country) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_imp_age_analyses$n = countries_rescon$Freq
sum(models_imp_age_analyses$n)
## [1] 8517
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_imp_age_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0944 0.0111 8.5071 0.0000 0.0726 0.1161 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 19.3271 (df = 6), p-value = 0.0036
## I-square statistic = 69.0%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 8.4613 -14.9226 -14.9767
data_included_documented_rescon_wide = data_included_documented_rescon %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(ideal_age_rel, France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_ideal_age_rel = data_included_documented_rescon_wide %>%
select(-ideal_age_rel) %>%
map(~lm(data_included_documented_rescon_wide$ideal_age_rel ~ .x,
data = data_included_documented_rescon_wide)) %>%
map(lm.beta)
models_ideal_age_rel_coef = models_ideal_age_rel %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_ideal_age_rel_se = models_ideal_age_rel %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_ideal_age_rel_analyses = left_join(models_ideal_age_rel_coef,
models_ideal_age_rel_se,
by = "name") %>%
mutate(outcome = "H4a(2)) Ideal Age (Level)")
countries_rescon =
data_included_documented_rescon %>%
filter(!is.na(ideal_age_rel)) %>%
select(country) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_ideal_age_rel_analyses$n = countries_rescon$Freq
sum(models_ideal_age_rel_analyses$n)
## [1] 7771
model = mvmeta(mean ~ 1, data = models_ideal_age_rel_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_ideal_age_rel_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0044 0.0246 0.1780 0.8587 -0.0438 0.0526
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 2.2741 (df = 6), p-value = 0.8928
## I-square statistic = 1.0%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 11.2587 -20.5174 -20.5715
data_included_documented_rescon_wide = data_included_documented_rescon %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(imp_height, France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_imp_height = data_included_documented_rescon_wide %>%
select(-imp_height) %>%
map(~lm(data_included_documented_rescon_wide$imp_height ~ .x,
data = data_included_documented_rescon_wide)) %>%
map(lm.beta)
models_imp_height_coef = models_imp_height %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_imp_height_se = models_imp_height %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_imp_height_analyses = left_join(models_imp_height_coef,
models_imp_height_se,
by = "name") %>%
mutate(outcome = "H4b(1)) Ideal Height (Importance)")
countries_rescon =
data_included_documented_rescon %>%
filter(!is.na(imp_height)) %>%
select(country) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_imp_height_analyses$n = countries_rescon$Freq
sum(models_imp_height_analyses$n)
## [1] 8459
model = mvmeta(mean ~ 1, data = models_imp_height_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_imp_height_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.1147 0.0118 9.7572 0.0000 0.0917 0.1378 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 5.7811 (df = 6), p-value = 0.4481
## I-square statistic = 1.0%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## 14.8191 -27.6381 -27.6922
data_included_documented_rescon_wide = data_included_documented_rescon %>%
pivot_wider(names_from = country, values_from = political_orientation) %>%
select(ideal_height, France, Germany, `United States of America`, Mexico,
Italy, Brazil, Spain)
models_ideal_height = data_included_documented_rescon_wide %>%
select(-ideal_height) %>%
map(~lm(data_included_documented_rescon_wide$ideal_height ~ .x,
data = data_included_documented_rescon_wide)) %>%
map(lm.beta)
models_ideal_height_coef = models_ideal_height %>%
map(coef) %>%
as.data.frame() %>%
rownames_to_column(var = "rowname") %>%
filter(rowname != "(Intercept)") %>%
pivot_longer(cols = -rowname) %>%
select(-rowname) %>%
rename(mean = value)
models_ideal_height_se = models_ideal_height %>%
map(tidy) %>%
tibble(models_pref_politicalsim_lin_se = ., Names = names(.)) %>%
hoist(models_pref_politicalsim_lin_se, coefficients = "std.error") %>%
select(-models_pref_politicalsim_lin_se) %>%
unnest_wider(., coefficients, names_sep = "_") %>%
select(coefficients_2, Names) %>%
rename("name" = "Names",
"se" = "coefficients_2") %>%
mutate(name = ifelse(name == "United States of America",
"United.States.of.America", name))
models_ideal_height_analyses = left_join(models_ideal_height_coef,
models_ideal_height_se,
by = "name") %>%
mutate(outcome = "H4b(2)) Ideal Height (Level)")
countries_rescon =
data_included_documented_rescon %>%
filter(!is.na(ideal_height)) %>%
select(country) %>%
table() %>%
as.data.frame() %>%
arrange(-Freq)
models_ideal_height_analyses$n = countries_rescon$Freq
sum(models_ideal_height_analyses$n)
## [1] 8112
model = mvmeta(mean ~ 1, data = models_ideal_height_analyses, S = se^2,
method = "fixed")
summary(model)
## Call: mvmeta(formula = mean ~ 1, S = se^2, data = models_ideal_height_analyses,
## method = "fixed")
##
## Univariate fixed-effects meta-analysis
## Dimension: 1
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0125 0.0036 3.5174 0.0004 0.0055 0.0195 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 89.4342 (df = 6), p-value = 0.0000
## I-square statistic = 93.3%
##
## 7 studies, 7 observations, 1 fixed and 0 random-effects parameters
## logLik AIC BIC
## -18.6924 39.3848 39.3307