Here, we perform additional robustness checks including age in each model as a covariate.

Library

library(formr)
library(effects)
## Lade nötiges Paket: carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
library(effectsize)
library(lme4)
## Lade nötiges Paket: Matrix
library(sjstats)
## 
## Attache Paket: 'sjstats'
## Die folgenden Objekte sind maskiert von 'package:effectsize':
## 
##     cohens_f, cramers_v, phi
library(lmerTest)
## 
## Attache Paket: 'lmerTest'
## Das folgende Objekt ist maskiert 'package:lme4':
## 
##     lmer
## Das folgende Objekt ist maskiert 'package:stats':
## 
##     step
library(dplyr)
## 
## Attache Paket: 'dplyr'
## Die folgenden Objekte sind maskiert von 'package:formr':
## 
##     first, last
## Die folgenden Objekte sind maskiert von 'package:stats':
## 
##     filter, lag
## Die folgenden Objekte sind maskiert von 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(RColorBrewer)
library(minqa)

Data

Load selected data based on 03_codebook

data_included_documented = read.csv(file = "data_included_documented.csv")[,-1]

Political, Ethnic, and Religious Similarity

H1a Preference for Similarity in Political Beliefs

H1a(1) There is no linear link between right-wing political orientation and women’s preferences for partner’s similar political beliefs and values. H1a(2) There is a positive quadratic link between right-wing political orientation and women’s preferences for partner’s similar political beliefs and values. Outcome: Preference ratings for partner’s similar political beliefs and values. Predictors: Political Orientation & Age. Random intercept and random slope for country.

H1a(1) Linear Effect
Models
model_pref_politicalsim_lin_robustcheck <- lmer(pref_politicalsim ~ political_orientation  + age +
                                 (1+political_orientation|country),
                               data = data_included_documented, control =lmerControl(optimizer = "bobyqa"))
Summary
summary(model_pref_politicalsim_lin_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## pref_politicalsim ~ political_orientation + age + (1 + political_orientation |  
##     country)
##    Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 52404.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5217 -0.6811  0.1268  0.7383  2.2603 
## 
## Random effects:
##  Groups   Name                  Variance Std.Dev. Corr 
##  country  (Intercept)           0.7130   0.8444        
##           political_orientation 0.0326   0.1806   -0.83
##  Residual                       3.3023   1.8172        
## Number of obs: 12946, groups:  country, 144
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            2.692e+00  1.338e-01  1.049e+02  20.116   <2e-16 ***
## political_orientation -7.417e-02  3.175e-02  4.687e+01  -2.336   0.0238 *  
## age                    2.853e-02  2.356e-03  1.291e+04  12.112   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.759       
## age         -0.439  0.021
confint(model_pref_politicalsim_lin_robustcheck, level = 0.997)
## Computing profile confidence intervals ...
##                            0.15 %     99.85 %
## .sig01                 0.56024595  1.22559147
## .sig02                -0.95021383 -0.46510688
## .sig03                 0.10187680  0.29165818
## .sigma                 1.78396082  1.85138428
## (Intercept)            2.27776577  3.09149283
## political_orientation -0.16911363  0.02952843
## age                    0.02153767  0.03552314
Standardized Coefficients
standardize_parameters(model_pref_politicalsim_lin_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI  CI_low CI_high
##   <chr>                           <dbl> <dbl>   <dbl>   <dbl>
## 1 (Intercept)                    0      0.997  0       0     
## 2 political_orientation         -0.0528 0.997 -0.120   0.0143
## 3 age                            0.103  0.997  0.0775  0.128
Plot
lmer(pref_politicalsim ~ political_orientation + age + (1+political_orientation|country),
       data = data_included_documented) %>%
    allEffects() %>%
    plot()
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00397324 (tol = 0.002, component 1)

H1a(2) Quadratic Effect

Here, we are examining the quadratic effect of right-wing political orientation on preferred political similarity in a partner controlling for age using the Two Lines Approach (Simonsohn, 2018). We are using the Robin Hood Algorithm in order to set the breaking point. Then, we are calculating two multilevel regressions on either side of the breaking point. Outcome: Preference ratings for partner’s similar political beliefs and values. Predictors: Political Orientation & Age. Random intercept and random slope for country.

Algorithm: Find breaking point

See 11_twolines_analyses_multilevel

Regression 1 (x <= breaking_point)
model_pref_politicalsim_1_robustcheck = lmer(pref_politicalsim ~ political_orientation + age +
                                 (1+political_orientation|country),
                               data = data_included_documented %>%
                                 dplyr::filter(political_orientation <= 3), control =lmerControl(optimizer = "bobyqa"))


summary(model_pref_politicalsim_1_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## pref_politicalsim ~ political_orientation + age + (1 + political_orientation |  
##     country)
##    Data: data_included_documented %>% dplyr::filter(political_orientation <=  
##     3)
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 42551.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7593 -0.6977  0.1446  0.7186  2.3337 
## 
## Random effects:
##  Groups   Name                  Variance Std.Dev. Corr 
##  country  (Intercept)           0.62089  0.7880        
##           political_orientation 0.05005  0.2237   -0.74
##  Residual                       3.14588  1.7737        
## Number of obs: 10633, groups:  country, 138
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            3.135e+00  1.383e-01  7.205e+01  22.666   <2e-16 ***
## political_orientation -3.030e-01  4.200e-02  2.907e+01  -7.214    6e-08 ***
## age                    2.756e-02  2.559e-03  1.060e+04  10.767   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.730       
## age         -0.463  0.021
confint(model_pref_politicalsim_1_robustcheck, level = 0.997)
## Computing profile confidence intervals ...
##                            0.15 %    99.85 %
## .sig01                 0.46632087  1.2306668
## .sig02                -0.92602352 -0.1616867
## .sig03                 0.09393412  0.4034475
## .sigma                 1.73786214  1.8106810
## (Intercept)            2.67745475  3.5563482
## political_orientation -0.42985824 -0.1479782
## age                    0.01996013  0.0351559
standardize_parameters(model_pref_politicalsim_1_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI  CI_low CI_high
##   <chr>                           <dbl> <dbl>   <dbl>   <dbl>
## 1 (Intercept)                    0      0.997  0       0     
## 2 political_orientation         -0.164  0.997 -0.231  -0.0965
## 3 age                            0.0984 0.997  0.0713  0.126
plot(allEffects(model_pref_politicalsim_1_robustcheck))

Regression 2 (x >= breaking_point)
model_pref_politicalsim_2_robustcheck = lmer(pref_politicalsim ~ political_orientation + age +
                                 (1+political_orientation|country),
                               data = data_included_documented %>%
                                 dplyr::filter(political_orientation >= 3), control =lmerControl(optimizer = "bobyqa"))


summary(model_pref_politicalsim_2_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## pref_politicalsim ~ political_orientation + age + (1 + political_orientation |  
##     country)
##    Data: data_included_documented %>% dplyr::filter(political_orientation >=  
##     3)
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 29754.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0355 -0.8181  0.1015  0.7168  2.2669 
## 
## Random effects:
##  Groups   Name                  Variance Std.Dev. Corr 
##  country  (Intercept)           0.7411   0.8609        
##           political_orientation 0.0311   0.1763   -0.81
##  Residual                       3.2812   1.8114        
## Number of obs: 7356, groups:  country, 129
## 
## Fixed effects:
##                        Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)           9.904e-01  1.925e-01 3.369e+01   5.144 1.14e-05 ***
## political_orientation 4.090e-01  4.546e-02 2.269e+01   8.996 6.10e-09 ***
## age                   2.643e-02  3.137e-03 7.337e+03   8.425  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.838       
## age         -0.392  0.002
confint(model_pref_politicalsim_2_robustcheck, level = 0.997)
## Computing profile confidence intervals ...
##                            0.15 %    99.85 %
## .sig01                 0.31552709 1.64154220
## .sig02                -0.97162975 0.91451883
## .sig03                 0.03947407 0.37782267
## .sigma                 1.76753258 1.85696350
## (Intercept)            0.41240088 1.68463907
## political_orientation  0.23621054 0.55393090
## age                    0.01711562 0.03573698
standardize_parameters(model_pref_politicalsim_2_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI CI_low CI_high
##   <chr>                           <dbl> <dbl>  <dbl>   <dbl>
## 1 (Intercept)                    0      0.997 0        0    
## 2 political_orientation          0.175  0.997 0.117    0.233
## 3 age                            0.0943 0.997 0.0611   0.128
plot(allEffects(model_pref_politicalsim_2_robustcheck))

H1b Preference for Similarity in Ethnicity/Race

H1b There is a positive linear link between right-wing political orientation and women’s preferences for partner’s similar ethnicity/race. Outcome: Preference ratings for partner’s similar ethnicity/race. Predictors: Political Orientation & Age. Random intercept and random slope for country.

Models
model_pref_ethnicalsim_robustcheck <- lmer(pref_ethnicalsim ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control =lmerControl(optimizer = "bobyqa"))
Summary
summary(model_pref_ethnicalsim_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## pref_ethnicalsim ~ political_orientation + age + (1 + political_orientation |  
##     country)
##    Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 30430.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2779 -0.4648 -0.0409  0.6023  2.4234 
## 
## Random effects:
##  Groups   Name                  Variance Std.Dev. Corr 
##  country  (Intercept)           0.080758 0.28418       
##           political_orientation 0.006377 0.07986  -0.40
##  Residual                       1.955411 1.39836       
## Number of obs: 8641, groups:  country, 127
## 
## Fixed effects:
##                        Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)           2.805e+00  8.451e-02 6.408e+01  33.188  < 2e-16 ***
## political_orientation 1.420e-01  2.040e-02 2.529e+01   6.962 2.52e-07 ***
## age                   5.262e-03  2.158e-03 8.636e+03   2.438   0.0148 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.572       
## age         -0.637  0.018
confint(model_pref_ethnicalsim_robustcheck, level = 0.997)
## Computing profile confidence intervals ...
##                             0.15 %   99.85 %
## .sig01                 0.104270231 0.5667020
## .sig02                -0.879729688 0.8025576
## .sig03                 0.030113496 0.1646519
## .sigma                 1.367138420 1.4306733
## (Intercept)            2.553361718 3.0755480
## political_orientation  0.071592573 0.2033169
## age                   -0.001137014 0.0116801
Standardized Coefficients
standardize_parameters(model_pref_ethnicalsim_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI   CI_low CI_high
##   <chr>                           <dbl> <dbl>    <dbl>   <dbl>
## 1 (Intercept)                    0      0.997  0        0     
## 2 political_orientation          0.129  0.997  0.0742   0.184 
## 3 age                            0.0258 0.997 -0.00562  0.0573
Plot
lmer(pref_ethnicalsim ~ political_orientation + age + (1+political_orientation|country),
       data = data_included_documented) %>%
    allEffects() %>%
    plot()

H1c Preference for Similarity in Religion

H1c There is a positive linear link between right-wing political orientation and women’s preferences for partner’s similar religious beliefs.
Outcome: Preference ratings for partner’s similar religious beliefs. Predictors: Political Orientation & Age. Random intercept and random slope for country.

Models
model_pref_religioussim_robustcheck <- lmer(pref_religioussim ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control =lmerControl(optimizer = "bobyqa"))
Summary
summary(model_pref_religioussim_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## pref_religioussim ~ political_orientation + age + (1 + political_orientation |  
##     country)
##    Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 56373.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.44074 -1.00588  0.05918  0.84691  2.04253 
## 
## Random effects:
##  Groups   Name                  Variance Std.Dev. Corr 
##  country  (Intercept)           0.403206 0.63499       
##           political_orientation 0.006292 0.07932  -0.36
##  Residual                       4.519047 2.12581       
## Number of obs: 12934, groups:  country, 144
## 
## Fixed effects:
##                        Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)           2.137e+00  1.200e-01 6.933e+01  17.803  < 2e-16 ***
## political_orientation 1.781e-01  2.255e-02 2.561e+01   7.895 2.52e-08 ***
## age                   3.327e-02  2.751e-03 1.291e+04  12.094  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.518       
## age         -0.570  0.033
confint(model_pref_religioussim_robustcheck, level = 0.997)
## Computing profile confidence intervals ...
##                            0.15 %    99.85 %
## .sig01                 0.33549165 1.04178607
## .sig02                -0.91036705 0.94115335
## .sig03                 0.02031065 0.17154676
## .sigma                 2.08691097 2.16580486
## (Intercept)            1.75400882 2.57186768
## political_orientation  0.07661313 0.26975566
## age                    0.02508655 0.04142527
Standardized Coefficients
standardize_parameters(model_pref_religioussim_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI CI_low CI_high
##   <chr>                           <dbl> <dbl>  <dbl>   <dbl>
## 1 (Intercept)                     0     0.997 0        0    
## 2 political_orientation           0.110 0.997 0.0688   0.152
## 3 age                             0.104 0.997 0.0787   0.130
Plot
lmer(pref_religioussim ~ political_orientation + age + (1+political_orientation|country),
       data = data_included_documented) %>%
    allEffects() %>%
    plot()

Ideal Partner Preferences

H2a Preference for the Level of Financial Security- Successfulness

H2a There is a positive linear link between right-wing political orientation and women’s preferences for the level of financial security and successfulness. Outcome: Level ratings for partner’s financial security-successfulness. Predictors: Political Orientation & Age. Random intercept and random slope for country.

Models
model_pref_level_financially_secure_successful_ambitious_robustcheck <- lmer(pref_level_financially_secure_successful_ambitious ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control =lmerControl(optimizer = "bobyqa"))
## boundary (singular) fit: see help('isSingular')
Summary
summary(model_pref_level_financially_secure_successful_ambitious_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## pref_level_financially_secure_successful_ambitious ~ political_orientation +  
##     age + (1 + political_orientation | country)
##    Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 31651.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.8169 -0.6960  0.0004  0.6958  2.6418 
## 
## Random effects:
##  Groups   Name                  Variance  Std.Dev. Corr 
##  country  (Intercept)           0.1341548 0.36627       
##           political_orientation 0.0009063 0.03011  -1.00
##  Residual                       0.7195492 0.84826       
## Number of obs: 12548, groups:  country, 143
## 
## Fixed effects:
##                        Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)           4.125e+00  5.499e-02 1.352e+02  75.004   <2e-16 ***
## political_orientation 7.306e-02  6.808e-03 9.832e+01  10.731   <2e-16 ***
## age                   9.398e-03  1.114e-03 1.251e+04   8.439   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.689       
## age         -0.509  0.056
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
confint(model_pref_level_financially_secure_successful_ambitious_robustcheck, level = 0.997)
## Computing profile confidence intervals ...
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig02: falling back to linear interpolation
##                             0.15 %     99.85 %
## .sig01                 0.253369012  0.52378807
## .sig02                -1.006492439 -0.63548979
## .sig03                 0.008973381  0.05673334
## .sigma                 0.835930822  0.85796383
## (Intercept)            3.960542261  4.30049507
## political_orientation  0.047481689  0.09489592
## age                    0.006092425  0.01270256
Standardized Coefficients
standardize_parameters(model_pref_level_financially_secure_successful_ambitious_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI CI_low CI_high
##   <chr>                           <dbl> <dbl>  <dbl>   <dbl>
## 1 (Intercept)                    0      0.997 0       0     
## 2 political_orientation          0.110  0.997 0.0799  0.141 
## 3 age                            0.0724 0.997 0.0469  0.0978
Plot
lmer(pref_level_financially_secure_successful_ambitious ~ political_orientation + age + (1 + political_orientation| country),
       data = data_included_documented) %>%
    allEffects() %>%
    plot()
## boundary (singular) fit: see help('isSingular')

H2b Preference for the Level of Confidence-Assertiveness

H2b There is a positive linear link between right-wing political orientation and women’s preferences for the level of confidence and assertiveness.
Outcome: Level ratings for partner’s confidence-assertiveness. Predictors: Political Orientation & Age. Random intercept and random slope for country.

Models
model_pref_level_confident_assertive_robustcheck <- lmer(pref_level_confident_assertive ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control =lmerControl(optimizer = "bobyqa")) 
Summary
summary(model_pref_level_confident_assertive_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pref_level_confident_assertive ~ political_orientation + age +  
##     (1 + political_orientation | country)
##    Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 28704.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.8511 -0.6602 -0.0056  0.6702  3.1600 
## 
## Random effects:
##  Groups   Name                  Variance  Std.Dev. Corr 
##  country  (Intercept)           0.1559960 0.39496       
##           political_orientation 0.0008448 0.02906  -0.54
##  Residual                       0.5512740 0.74248       
## Number of obs: 12694, groups:  country, 144
## 
## Fixed effects:
##                        Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)           4.062e+00  5.346e-02 1.634e+02   75.99  < 2e-16 ***
## political_orientation 3.342e-02  7.958e-03 2.318e+01    4.20 0.000338 ***
## age                   1.481e-02  9.729e-04 1.265e+04   15.22  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.510       
## age         -0.456  0.036
confint(model_pref_level_confident_assertive_robustcheck, level = 0.997)
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig02: falling back to linear interpolation
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## Reduktion auf einmalige 'x' Werte
##                             0.15 %    99.85 %
## .sig01                 0.293536620 0.53171540
## .sig02                -0.967408639 0.18411111
## .sig03                 0.006596638 0.06129999
## .sigma                 0.728761947 0.75657040
## (Intercept)            3.902864943 4.22349455
## political_orientation  0.007092236 0.05784956
## age                    0.011922193 0.01769817
Standardized Coefficients
standardize_parameters(model_pref_level_confident_assertive_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI CI_low CI_high
##   <chr>                           <dbl> <dbl>  <dbl>   <dbl>
## 1 (Intercept)                    0      0.997 0       0     
## 2 political_orientation          0.0540 0.997 0.0158  0.0922
## 3 age                            0.121  0.997 0.0976  0.145
Plot
lmer(pref_level_confident_assertive ~ political_orientation + age + (1 + political_orientation|country),
       data = data_included_documented) %>%
    allEffects() %>%
    plot()

H2c Preference for the Level of Education-Intelligence

H2c There is no link between right-wing political orientation and women’s preferences for the level of education and intelligence.
Outcome: Level ratings for partner’s education-intelligence. Predictors: Political Orientation & Age. Random intercept and random slope for country.

Models
model_pref_level_intelligence_educated_robustcheck <- lmer(pref_level_intelligence_educated ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control =lmerControl(optimizer = "bobyqa"))
Summary
summary(model_pref_level_intelligence_educated_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pref_level_intelligence_educated ~ political_orientation + age +  
##     (1 + political_orientation | country)
##    Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 30053.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2127 -0.6821  0.0344  0.6903  2.1844 
## 
## Random effects:
##  Groups   Name                  Variance  Std.Dev. Corr 
##  country  (Intercept)           0.0652437 0.25543       
##           political_orientation 0.0009699 0.03114  -0.24
##  Residual                       0.6129668 0.78292       
## Number of obs: 12720, groups:  country, 141
## 
## Fixed effects:
##                        Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)           4.569e+00  4.586e-02 1.482e+02  99.625   <2e-16 ***
## political_orientation 2.328e-02  8.625e-03 2.888e+01   2.699   0.0115 *  
## age                   9.386e-03  1.020e-03 1.270e+04   9.198   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.484       
## age         -0.554  0.030
confint(model_pref_level_intelligence_educated_robustcheck, level = 0.997)
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig02: falling back to linear interpolation
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## Reduktion auf einmalige 'x' Werte
##                             0.15 %    99.85 %
## .sig01                 0.171745467 0.37101593
## .sig02                -0.802102795 0.57378389
## .sig03                 0.009368868 0.06422238
## .sigma                 0.768481172 0.79774218
## (Intercept)            4.431590141 4.71156031
## political_orientation -0.003998975 0.05323338
## age                    0.006355401 0.01241385
Standardized Coefficients
standardize_parameters(model_pref_level_intelligence_educated_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI   CI_low CI_high
##   <chr>                           <dbl> <dbl>    <dbl>   <dbl>
## 1 (Intercept)                    0      0.997  0        0     
## 2 political_orientation          0.0386 0.997 -0.00384  0.0810
## 3 age                            0.0791 0.997  0.0536   0.105
Plot
lmer(pref_level_intelligence_educated ~ political_orientation + age + (1 + political_orientation|country),
       data = data_included_documented) %>%
    allEffects() %>%
    plot()
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0107601 (tol = 0.002, component 1)

H2d Preference for the Level of Kindness-Supportiveness

H2d There is no link between right-wing political orientation and women’s preferences for the level of kindness and supportiveness.
Outcome: Level ratings for partner’s kindness-supportiveness. Predictors: Political Orientation & Age. Random intercept and random slope for country.

Models
model_pref_level_kind_supportive_robustcheck <- lmer(pref_level_kind_supportive ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control =lmerControl(optimizer = "bobyqa"))
Summary
summary(model_pref_level_kind_supportive_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pref_level_kind_supportive ~ political_orientation + age + (1 +  
##     political_orientation | country)
##    Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 26526.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.9140 -0.6667  0.0855  0.8305  1.8003 
## 
## Random effects:
##  Groups   Name                  Variance  Std.Dev. Corr
##  country  (Intercept)           1.615e-02 0.127072     
##           political_orientation 7.437e-05 0.008624 0.62
##  Residual                       4.663e-01 0.682850     
## Number of obs: 12726, groups:  country, 143
## 
## Fixed effects:
##                        Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)           5.040e+00  3.163e-02 1.631e+02 159.327  < 2e-16 ***
## political_orientation 1.267e-02  4.891e-03 1.475e+01   2.590   0.0207 *  
## age                   4.959e-03  8.925e-04 1.266e+04   5.556 2.81e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.323       
## age         -0.700  0.049
confint(model_pref_level_kind_supportive_robustcheck, level = 0.997)
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig01
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig01: falling back to linear interpolation
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig02: falling back to linear interpolation
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## Reduktion auf einmalige 'x' Werte
##                             0.15 %     99.85 %
## .sig01                 0.101705922 0.204797206
## .sig02                -1.000000000 1.000000000
## .sig03                 0.000000000 0.033780054
## .sigma                 0.670273117 0.695760649
## (Intercept)            4.946227706 5.137257935
## political_orientation -0.003624704 0.029108389
## age                    0.002304326 0.007608436
Standardized Coefficients
standardize_parameters(model_pref_level_kind_supportive_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI   CI_low CI_high
##   <chr>                           <dbl> <dbl>    <dbl>   <dbl>
## 1 (Intercept)                    0      0.997  0        0     
## 2 political_orientation          0.0246 0.997 -0.00360  0.0529
## 3 age                            0.0487 0.997  0.0227   0.0748
Plot
lmer(pref_level_kind_supportive ~ political_orientation + age + (1 + political_orientation|country),
       data = data_included_documented) %>%
    allEffects() %>%
    plot()
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00588346 (tol = 0.002, component 1)

H2e Preference for the Level of Attractiveness

H2e There is no link between right-wing political orientation and women’s preferences for the level of attractiveness.
Outcome: Level ratings for partner’s attractiveness. Predictors: Political Orientation & Age. Random intercept and random slope for country.

Models
model_pref_level_attractiveness_robustcheck <- lmer(pref_level_attractiveness ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control =lmerControl(optimizer = "bobyqa"))
Summary
summary(model_pref_level_attractiveness_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pref_level_attractiveness ~ political_orientation + age + (1 +  
##     political_orientation | country)
##    Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 32911.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6614 -0.6495 -0.0217  0.6475  2.5267 
## 
## Random effects:
##  Groups   Name                  Variance  Std.Dev. Corr
##  country  (Intercept)           0.0109929 0.10485      
##           political_orientation 0.0002698 0.01643  0.27
##  Residual                       0.8049943 0.89721      
## Number of obs: 12523, groups:  country, 142
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            3.966e+00  3.864e-02  1.692e+02 102.616  < 2e-16 ***
## political_orientation  3.892e-02  7.120e-03  1.297e+01   5.466 0.000109 ***
## age                   -1.523e-03  1.174e-03  1.247e+04  -1.298 0.194326    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.402       
## age         -0.751  0.041
confint(model_pref_level_attractiveness_robustcheck, level = 0.997)
## Computing profile confidence intervals ...
##                             0.15 %     99.85 %
## .sig01                 0.053277639 0.188794386
## .sig02                -0.822662479 1.000000000
## .sig03                 0.000000000 0.058453744
## .sigma                 0.880571880 0.914311109
## (Intercept)            3.850144942 4.081574661
## political_orientation  0.013284208 0.061250527
## age                   -0.005005251 0.001963986
Standardized Coefficients
standardize_parameters(model_pref_level_attractiveness_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI  CI_low CI_high
##   <chr>                           <dbl> <dbl>   <dbl>   <dbl>
## 1 (Intercept)                    0      0.997  0       0     
## 2 political_orientation          0.0579 0.997  0.0264  0.0893
## 3 age                           -0.0116 0.997 -0.0381  0.0149
Plot
lmer(pref_level_attractiveness ~ political_orientation + age + (1 + political_orientation| country),
       data = data_included_documented) %>%
    allEffects() %>%
    plot()
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -6.5e+03

Ideal Age and Height

H3a(1) Importance Ratings for Partner’s Age

H3a(1) There is a positive linear link between right-wing political orientation and women’s importance ratings for partner’s age. Outcome: Importance ratings for partner’s age. Predictors: Political Orientation & Age. Random intercept and random slope for country.

Models
model_imp_age_robustcheck <- lmer(imp_age ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control =lmerControl(optimizer = "bobyqa"))
Summary
summary(model_imp_age_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: imp_age ~ political_orientation + age + (1 + political_orientation |  
##     country)
##    Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 46120.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0860 -0.5065  0.1705  0.6534  2.1961 
## 
## Random effects:
##  Groups   Name                  Variance Std.Dev. Corr 
##  country  (Intercept)           0.085465 0.29234       
##           political_orientation 0.009757 0.09878  -0.77
##  Residual                       1.956241 1.39866       
## Number of obs: 13109, groups:  country, 143
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            3.716e+00  7.452e-02  5.222e+01  49.859  < 2e-16 ***
## political_orientation  7.908e-02  2.032e-02  1.539e+01   3.892  0.00138 ** 
## age                   -8.266e-03  1.796e-03  1.307e+04  -4.603 4.21e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.683       
## age         -0.597  0.024
confint(model_imp_age_robustcheck, level= 0.997)
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig01
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig01: falling back to linear interpolation
##                             0.15 %      99.85 %
## .sig01                 0.110868701  0.560820496
## .sig02                -0.961434270  0.617046419
## .sig03                 0.007766235  0.203196740
## .sigma                 1.373282066  1.424910245
## (Intercept)            3.486463009  3.959721045
## political_orientation  0.011026257  0.147576380
## age                   -0.013606154 -0.002940114
Standardized Coefficients
standardize_parameters(model_imp_age_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI  CI_low CI_high
##   <chr>                           <dbl> <dbl>   <dbl>   <dbl>
## 1 (Intercept)                    0      0.997  0       0     
## 2 political_orientation          0.0759 0.997  0.0180  0.134 
## 3 age                           -0.0402 0.997 -0.0661 -0.0143
Plot
lmer(imp_age ~ political_orientation + age + (1+political_orientation|country),
       data = data_included_documented) %>%
    allEffects() %>%
    plot()

H3a(2) Level Ratings for Partner’s Age

H3a(2) There is a positive linear link between right-wing political orientation and the relative age discrepancy between ideal partner’s age and women’s age. (discrepancy calculated as ideal partner’s age – women’s age) Outcome: Discrepancy between level ratings for ideal partner’s age and women’s age (ideal_age_rel) Predictors: Political Orientation & Age. Random intercept and random slope for country.

Models
model_ideal_age_rel_robustcheck <- lmer(ideal_age_rel ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control =lmerControl(optimizer = "bobyqa"))
Summary
summary(model_ideal_age_rel_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## ideal_age_rel ~ political_orientation + age + (1 + political_orientation |  
##     country)
##    Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 61595.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.4254  -0.4968  -0.1225   0.4167  25.7466 
## 
## Random effects:
##  Groups   Name                  Variance Std.Dev. Corr 
##  country  (Intercept)           0.8110   0.9006        
##           political_orientation 0.4583   0.6770   -0.94
##  Residual                       9.5160   3.0848        
## Number of obs: 12057, groups:  country, 140
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            3.425e+00  1.762e-01  3.244e+01  19.443   <2e-16 ***
## political_orientation  1.469e-01  8.420e-02  3.640e+01   1.745   0.0894 .  
## age                   -4.221e-02  4.158e-03  1.199e+04 -10.152   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.711       
## age         -0.576  0.006
confint(model_ideal_age_rel_robustcheck, level = 0.997)
## Computing profile confidence intervals ...
##                            0.15 %     99.85 %
## .sig01                 0.23944723  1.86330535
## .sig02                -0.99282843  0.01939224
## .sig03                 0.39869760  1.01469699
## .sigma                 3.02631366  3.14499654
## (Intercept)            2.82919847  3.98186213
## political_orientation -0.11315423  0.41406585
## age                   -0.05456051 -0.02987641
Standardized Coefficients
standardize_parameters(model_ideal_age_rel_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI  CI_low CI_high
##   <chr>                           <dbl> <dbl>   <dbl>   <dbl>
## 1 (Intercept)                    0      0.997  0       0     
## 2 political_orientation          0.0636 0.997 -0.0446  0.172 
## 3 age                           -0.0921 0.997 -0.119  -0.0652
Plot
lmer(ideal_age_rel ~ political_orientation + age + (1+political_orientation|country),
       data = data_included_documented) %>%
    allEffects() %>%
    plot()

H3b(1) Importance Ratings for Partner’s Height

H3b(1) There is a positive linear link between right-wing political orientation and women’s importance ratings for partner’s height. Outcome: Importance ratings for partner’s height. Predictors: Political Orientation & Age. Random intercept and random slope for country.

Models
model_imp_height_robustcheck <- lmer(imp_height ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control =lmerControl(optimizer = "bobyqa"))
## boundary (singular) fit: see help('isSingular')
Summary
summary(model_imp_height_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## imp_height ~ political_orientation + age + (1 + political_orientation |  
##     country)
##    Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 46906
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2839 -0.5568  0.0992  0.7234  2.0290 
## 
## Random effects:
##  Groups   Name                  Variance  Std.Dev. Corr 
##  country  (Intercept)           8.664e-02 0.294348      
##           political_orientation 7.693e-05 0.008771 -1.00
##  Residual                       2.130e+00 1.459394      
## Number of obs: 13022, groups:  country, 143
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            3.913e+00  6.934e-02  1.647e+02   56.43  < 2e-16 ***
## political_orientation  1.171e-01  9.667e-03  6.703e+02   12.12  < 2e-16 ***
## age                   -5.444e-03  1.877e-03  1.302e+04   -2.90  0.00374 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.476       
## age         -0.674  0.057
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
confint(model_imp_height_robustcheck, level = 0.997)
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig01
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig01: falling back to linear interpolation
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig02: falling back to linear interpolation
##                            0.15 %      99.85 %
## .sig01                 0.18244127 0.3923682822
## .sig02                -1.00000000 1.0000000000
## .sig03                 0.00000000 0.0741722096
## .sigma                 1.43364813 1.4865977521
## (Intercept)            3.70585092 4.1346728259
## political_orientation  0.08195292 0.1514853491
## age                   -0.01102432 0.0001264944
Standardized Coefficients
standardize_parameters(model_imp_height_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI  CI_low  CI_high
##   <chr>                           <dbl> <dbl>   <dbl>    <dbl>
## 1 (Intercept)                    0      0.997  0      0       
## 2 political_orientation          0.107  0.997  0.0808 0.133   
## 3 age                           -0.0252 0.997 -0.0510 0.000597
Plot
lmer(imp_height ~ political_orientation + age + (1 + political_orientation| country),
       data = data_included_documented) %>%
    allEffects() %>%
    plot()
## boundary (singular) fit: see help('isSingular')

H3b(2) Level Ratings for Partner’s Height

H3b(2) There is a positive linear link between right-wing political orientation and ideal partner’s height. Outcome: Level ratings for ideal partner’s height. Predictors: Political Orientation & Age. Random intercept and random slope for country.

Models
model_ideal_height_robustcheck <- lmer(ideal_height ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control = lmerControl(optimizer = "bobyqa"))
## boundary (singular) fit: see help('isSingular')
Summary
summary(model_ideal_height_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## ideal_height ~ political_orientation + age + (1 + political_orientation |  
##     country)
##    Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 14661.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -7.1159 -0.1374 -0.0759  0.0026  2.5926 
## 
## Random effects:
##  Groups   Name                  Variance  Std.Dev. Corr
##  country  (Intercept)           1.685e-03 0.041047     
##           political_orientation 1.134e-05 0.003368 1.00
##  Residual                       1.877e-01 0.433192     
## Number of obs: 12520, groups:  country, 142
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            1.108e+00  1.783e-02  2.196e+02  62.172  < 2e-16 ***
## political_orientation  2.312e-03  2.945e-03  3.601e+02   0.785    0.433    
## age                   -3.220e-03  5.715e-04  1.246e+04  -5.634  1.8e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pltcl_
## pltcl_rnttn -0.371       
## age         -0.788  0.044
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
confint(model_ideal_height_robustcheck, level = 0.997)
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig01
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig01: falling back to linear interpolation
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig02: falling back to linear interpolation
##                             0.15 %      99.85 %
## .sig01                 0.015219409  0.085389183
## .sig02                -1.000000000  1.000000000
## .sig03                 0.000000000  0.015443341
## .sigma                 0.475998562  0.445652997
## (Intercept)            1.055198315  1.164038633
## political_orientation -0.008530965  0.011898733
## age                   -0.004914860 -0.001521768
Standardized Coefficients
standardize_parameters(model_ideal_height_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
##   Parameter             Std_Coefficient    CI  CI_low CI_high
##   <chr>                           <dbl> <dbl>   <dbl>   <dbl>
## 1 (Intercept)                   0       0.997  0       0     
## 2 political_orientation         0.00720 0.997 -0.0200  0.0344
## 3 age                          -0.0506  0.997 -0.0772 -0.0239
Plot
lmer(ideal_height ~ political_orientation + age + (1 + political_orientation| country),
       data = data_included_documented) %>%
    allEffects() %>%
    plot()
## boundary (singular) fit: see help('isSingular')

LS0tDQp0aXRsZTogPGZvbnQgY29sb3I9IiM2NkMyQTUiPlJvYnVzdG5lc3MgQW5hbHlzZXM8L2ZvbnQ+DQpjc2w6IGFwYS1jdXN0b20tbm8taXNzdWUuY3NsDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZm9sZGluZzogInNob3ciDQplZGl0b3Jfb3B0aW9uczogDQogIGNodW5rX291dHB1dF90eXBlOiBjb25zb2xlDQotLS0NCiMjIHsudGFic2V0fQ0KSGVyZSwgd2UgcGVyZm9ybSBhZGRpdGlvbmFsIHJvYnVzdG5lc3MgY2hlY2tzIGluY2x1ZGluZyBhZ2UgaW4gZWFjaCBtb2RlbCBhcyBhIGNvdmFyaWF0ZS4gDQoNCiMjIyBMaWJyYXJ5DQpgYGB7ciBMaWJyYXJ5fQ0KbGlicmFyeShmb3JtcikNCmxpYnJhcnkoZWZmZWN0cykNCmxpYnJhcnkoZWZmZWN0c2l6ZSkNCmxpYnJhcnkobG1lNCkNCmxpYnJhcnkoc2pzdGF0cykNCmxpYnJhcnkobG1lclRlc3QpDQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShSQ29sb3JCcmV3ZXIpDQpsaWJyYXJ5KG1pbnFhKQ0KYGBgDQoNCiMjIyBEYXRhDQpMb2FkIHNlbGVjdGVkIGRhdGEgYmFzZWQgb24gMDNfY29kZWJvb2sNCmBgYHtyfQ0KZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkID0gcmVhZC5jc3YoZmlsZSA9ICJkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQuY3N2IilbLC0xXQ0KYGBgDQoNCiMjIyBQb2xpdGljYWwsIEV0aG5pYywgYW5kIFJlbGlnaW91cyBTaW1pbGFyaXR5IHsudGFic2V0fQ0KIyMjIyBIMWEgUHJlZmVyZW5jZSBmb3IgU2ltaWxhcml0eSBpbiBQb2xpdGljYWwgQmVsaWVmcyB7LnRhYnNldH0NCkgxYSgxKSBUaGVyZSBpcyBubyBsaW5lYXIgbGluayBiZXR3ZWVuIHJpZ2h0LXdpbmcgcG9saXRpY2FsIG9yaWVudGF0aW9uIGFuZCB3b21lbuKAmXMgcHJlZmVyZW5jZXMgZm9yIHBhcnRuZXLigJlzIHNpbWlsYXIgcG9saXRpY2FsIGJlbGllZnMgYW5kIHZhbHVlcy4NCkgxYSgyKSBUaGVyZSBpcyBhIHBvc2l0aXZlIHF1YWRyYXRpYyBsaW5rIGJldHdlZW4gcmlnaHQtd2luZyBwb2xpdGljYWwgb3JpZW50YXRpb24gYW5kIHdvbWVu4oCZcyBwcmVmZXJlbmNlcyBmb3IgcGFydG5lcuKAmXMgc2ltaWxhciBwb2xpdGljYWwgYmVsaWVmcyBhbmQgdmFsdWVzLg0KT3V0Y29tZTogUHJlZmVyZW5jZSByYXRpbmdzIGZvciBwYXJ0bmVyJ3Mgc2ltaWxhciBwb2xpdGljYWwgYmVsaWVmcyBhbmQgdmFsdWVzLg0KUHJlZGljdG9yczogUG9saXRpY2FsIE9yaWVudGF0aW9uICYgQWdlLiBSYW5kb20gaW50ZXJjZXB0IGFuZCByYW5kb20gc2xvcGUgZm9yIGNvdW50cnkuDQoNCiMjIyMjIEgxYSgxKSBMaW5lYXIgRWZmZWN0DQojIyMjIyBNb2RlbHMNCmBgYHtyfQ0KbW9kZWxfcHJlZl9wb2xpdGljYWxzaW1fbGluX3JvYnVzdGNoZWNrIDwtIGxtZXIocHJlZl9wb2xpdGljYWxzaW0gfiBwb2xpdGljYWxfb3JpZW50YXRpb24gICsgYWdlICsNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICgxK3BvbGl0aWNhbF9vcmllbnRhdGlvbnxjb3VudHJ5KSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkYXRhID0gZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkLCBjb250cm9sID1sbWVyQ29udHJvbChvcHRpbWl6ZXIgPSAiYm9ieXFhIikpDQpgYGANCg0KIyMjIyMgU3VtbWFyeQ0KYGBge3J9DQpzdW1tYXJ5KG1vZGVsX3ByZWZfcG9saXRpY2Fsc2ltX2xpbl9yb2J1c3RjaGVjaykNCmNvbmZpbnQobW9kZWxfcHJlZl9wb2xpdGljYWxzaW1fbGluX3JvYnVzdGNoZWNrLCBsZXZlbCA9IDAuOTk3KQ0KYGBgDQoNCiMjIyMjIFN0YW5kYXJkaXplZCBDb2VmZmljaWVudHMNCmBgYHtyfQ0Kc3RhbmRhcmRpemVfcGFyYW1ldGVycyhtb2RlbF9wcmVmX3BvbGl0aWNhbHNpbV9saW5fcm9idXN0Y2hlY2ssIG1ldGhvZCA9ICJiYXNpYyIsIGNpID0gMC45OTcpDQpgYGANCg0KIyMjIyMgUGxvdCB7LmFjdGl2ZX0NCmBgYHtyfQ0KbG1lcihwcmVmX3BvbGl0aWNhbHNpbSB+IHBvbGl0aWNhbF9vcmllbnRhdGlvbiArIGFnZSArICgxK3BvbGl0aWNhbF9vcmllbnRhdGlvbnxjb3VudHJ5KSwNCiAgICAgICBkYXRhID0gZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkKSAlPiUNCiAgICBhbGxFZmZlY3RzKCkgJT4lDQogICAgcGxvdCgpDQpgYGANCg0KIyMjIyBIMWEoMikgUXVhZHJhdGljIEVmZmVjdCB7LnRhYnNldH0NCkhlcmUsIHdlIGFyZSBleGFtaW5pbmcgdGhlIHF1YWRyYXRpYyBlZmZlY3Qgb2YgcmlnaHQtd2luZyBwb2xpdGljYWwgb3JpZW50YXRpb24gb24gcHJlZmVycmVkIHBvbGl0aWNhbCBzaW1pbGFyaXR5IGluIGEgcGFydG5lciBjb250cm9sbGluZyBmb3IgYWdlIHVzaW5nIHRoZSBUd28gTGluZXMgQXBwcm9hY2ggKFNpbW9uc29obiwgMjAxOCkuIFdlIGFyZSB1c2luZyB0aGUgUm9iaW4gSG9vZCBBbGdvcml0aG0gaW4gb3JkZXIgdG8gc2V0IHRoZSBicmVha2luZyBwb2ludC4gVGhlbiwgd2UgYXJlIGNhbGN1bGF0aW5nIHR3byBtdWx0aWxldmVsIHJlZ3Jlc3Npb25zIG9uIGVpdGhlciBzaWRlIG9mIHRoZSBicmVha2luZyBwb2ludC4NCk91dGNvbWU6IFByZWZlcmVuY2UgcmF0aW5ncyBmb3IgcGFydG5lcidzIHNpbWlsYXIgcG9saXRpY2FsIGJlbGllZnMgYW5kIHZhbHVlcy4NClByZWRpY3RvcnM6IFBvbGl0aWNhbCBPcmllbnRhdGlvbiAmIEFnZS4gUmFuZG9tIGludGVyY2VwdCBhbmQgcmFuZG9tIHNsb3BlIGZvciBjb3VudHJ5Lg0KDQojIyMjIyBBbGdvcml0aG06IEZpbmQgYnJlYWtpbmcgcG9pbnQNClNlZSAxMV90d29saW5lc19hbmFseXNlc19tdWx0aWxldmVsDQoNCg0KIyMjIyMgUmVncmVzc2lvbiAxICh4IDw9IGJyZWFraW5nX3BvaW50KQ0KYGBge3J9DQptb2RlbF9wcmVmX3BvbGl0aWNhbHNpbV8xX3JvYnVzdGNoZWNrID0gbG1lcihwcmVmX3BvbGl0aWNhbHNpbSB+IHBvbGl0aWNhbF9vcmllbnRhdGlvbiArIGFnZSArDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAoMStwb2xpdGljYWxfb3JpZW50YXRpb258Y291bnRyeSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGF0YSA9IGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCAlPiUNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRwbHlyOjpmaWx0ZXIocG9saXRpY2FsX29yaWVudGF0aW9uIDw9IDMpLCBjb250cm9sID1sbWVyQ29udHJvbChvcHRpbWl6ZXIgPSAiYm9ieXFhIikpDQoNCg0Kc3VtbWFyeShtb2RlbF9wcmVmX3BvbGl0aWNhbHNpbV8xX3JvYnVzdGNoZWNrKQ0KY29uZmludChtb2RlbF9wcmVmX3BvbGl0aWNhbHNpbV8xX3JvYnVzdGNoZWNrLCBsZXZlbCA9IDAuOTk3KQ0KDQpzdGFuZGFyZGl6ZV9wYXJhbWV0ZXJzKG1vZGVsX3ByZWZfcG9saXRpY2Fsc2ltXzFfcm9idXN0Y2hlY2ssIG1ldGhvZCA9ICJiYXNpYyIsIGNpID0gMC45OTcpDQoNCnBsb3QoYWxsRWZmZWN0cyhtb2RlbF9wcmVmX3BvbGl0aWNhbHNpbV8xX3JvYnVzdGNoZWNrKSkNCmBgYA0KDQojIyMjIyBSZWdyZXNzaW9uIDIgKHggPj0gYnJlYWtpbmdfcG9pbnQpDQpgYGB7cn0NCm1vZGVsX3ByZWZfcG9saXRpY2Fsc2ltXzJfcm9idXN0Y2hlY2sgPSBsbWVyKHByZWZfcG9saXRpY2Fsc2ltIH4gcG9saXRpY2FsX29yaWVudGF0aW9uICsgYWdlICsNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICgxK3BvbGl0aWNhbF9vcmllbnRhdGlvbnxjb3VudHJ5KSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkYXRhID0gZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkICU+JQ0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZHBseXI6OmZpbHRlcihwb2xpdGljYWxfb3JpZW50YXRpb24gPj0gMyksIGNvbnRyb2wgPWxtZXJDb250cm9sKG9wdGltaXplciA9ICJib2J5cWEiKSkNCg0KDQpzdW1tYXJ5KG1vZGVsX3ByZWZfcG9saXRpY2Fsc2ltXzJfcm9idXN0Y2hlY2spDQpjb25maW50KG1vZGVsX3ByZWZfcG9saXRpY2Fsc2ltXzJfcm9idXN0Y2hlY2ssIGxldmVsID0gMC45OTcpDQoNCnN0YW5kYXJkaXplX3BhcmFtZXRlcnMobW9kZWxfcHJlZl9wb2xpdGljYWxzaW1fMl9yb2J1c3RjaGVjaywgbWV0aG9kID0gImJhc2ljIiwgY2kgPSAwLjk5NykNCg0KcGxvdChhbGxFZmZlY3RzKG1vZGVsX3ByZWZfcG9saXRpY2Fsc2ltXzJfcm9idXN0Y2hlY2spKQ0KYGBgDQoNCiMjIyMgSDFiIFByZWZlcmVuY2UgZm9yIFNpbWlsYXJpdHkgaW4gRXRobmljaXR5L1JhY2Ugey50YWJzZXR9DQpIMWIgVGhlcmUgaXMgYSBwb3NpdGl2ZSBsaW5lYXIgbGluayBiZXR3ZWVuIHJpZ2h0LXdpbmcgcG9saXRpY2FsIG9yaWVudGF0aW9uIGFuZCB3b21lbuKAmXMgcHJlZmVyZW5jZXMgZm9yIHBhcnRuZXLigJlzIHNpbWlsYXIgZXRobmljaXR5L3JhY2UuIA0KT3V0Y29tZTogUHJlZmVyZW5jZSByYXRpbmdzIGZvciBwYXJ0bmVyJ3Mgc2ltaWxhciBldGhuaWNpdHkvcmFjZS4NClByZWRpY3RvcnM6IFBvbGl0aWNhbCBPcmllbnRhdGlvbiAmIEFnZS4gUmFuZG9tIGludGVyY2VwdCBhbmQgcmFuZG9tIHNsb3BlIGZvciBjb3VudHJ5Lg0KDQojIyMjIyBNb2RlbHMNCmBgYHtyfQ0KbW9kZWxfcHJlZl9ldGhuaWNhbHNpbV9yb2J1c3RjaGVjayA8LSBsbWVyKHByZWZfZXRobmljYWxzaW0gfiBwb2xpdGljYWxfb3JpZW50YXRpb24gKyBhZ2UgKyAoMStwb2xpdGljYWxfb3JpZW50YXRpb258Y291bnRyeSksIGRhdGEgPSBkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQsIGNvbnRyb2wgPWxtZXJDb250cm9sKG9wdGltaXplciA9ICJib2J5cWEiKSkNCmBgYA0KDQojIyMjIyBTdW1tYXJ5DQpgYGB7cn0NCnN1bW1hcnkobW9kZWxfcHJlZl9ldGhuaWNhbHNpbV9yb2J1c3RjaGVjaykNCmNvbmZpbnQobW9kZWxfcHJlZl9ldGhuaWNhbHNpbV9yb2J1c3RjaGVjaywgbGV2ZWwgPSAwLjk5NykNCmBgYA0KDQojIyMjIyBTdGFuZGFyZGl6ZWQgQ29lZmZpY2llbnRzDQpgYGB7cn0NCnN0YW5kYXJkaXplX3BhcmFtZXRlcnMobW9kZWxfcHJlZl9ldGhuaWNhbHNpbV9yb2J1c3RjaGVjaywgbWV0aG9kID0gImJhc2ljIiwgY2kgPSAwLjk5NykNCmBgYA0KDQojIyMjIyBQbG90IHsuYWN0aXZlfQ0KYGBge3J9DQpsbWVyKHByZWZfZXRobmljYWxzaW0gfiBwb2xpdGljYWxfb3JpZW50YXRpb24gKyBhZ2UgKyAoMStwb2xpdGljYWxfb3JpZW50YXRpb258Y291bnRyeSksDQogICAgICAgZGF0YSA9IGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCkgJT4lDQogICAgYWxsRWZmZWN0cygpICU+JQ0KICAgIHBsb3QoKQ0KYGBgDQoNCiMjIyMgSDFjIFByZWZlcmVuY2UgZm9yIFNpbWlsYXJpdHkgaW4gUmVsaWdpb24gey50YWJzZXR9DQpIMWMgVGhlcmUgaXMgYSBwb3NpdGl2ZSBsaW5lYXIgbGluayBiZXR3ZWVuIHJpZ2h0LXdpbmcgcG9saXRpY2FsIG9yaWVudGF0aW9uIGFuZCB3b21lbuKAmXMgcHJlZmVyZW5jZXMgZm9yIHBhcnRuZXLigJlzIHNpbWlsYXIgcmVsaWdpb3VzIGJlbGllZnMuICANCk91dGNvbWU6IFByZWZlcmVuY2UgcmF0aW5ncyBmb3IgcGFydG5lcidzIHNpbWlsYXIgcmVsaWdpb3VzIGJlbGllZnMuDQpQcmVkaWN0b3JzOiBQb2xpdGljYWwgT3JpZW50YXRpb24gJiBBZ2UuIFJhbmRvbSBpbnRlcmNlcHQgYW5kIHJhbmRvbSBzbG9wZSBmb3IgY291bnRyeS4NCg0KIyMjIyMgTW9kZWxzDQpgYGB7cn0NCm1vZGVsX3ByZWZfcmVsaWdpb3Vzc2ltX3JvYnVzdGNoZWNrIDwtIGxtZXIocHJlZl9yZWxpZ2lvdXNzaW0gfiBwb2xpdGljYWxfb3JpZW50YXRpb24gKyBhZ2UgKyAoMStwb2xpdGljYWxfb3JpZW50YXRpb258Y291bnRyeSksIGRhdGEgPSBkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQsIGNvbnRyb2wgPWxtZXJDb250cm9sKG9wdGltaXplciA9ICJib2J5cWEiKSkNCmBgYA0KDQojIyMjIyBTdW1tYXJ5DQpgYGB7cn0NCnN1bW1hcnkobW9kZWxfcHJlZl9yZWxpZ2lvdXNzaW1fcm9idXN0Y2hlY2spDQpjb25maW50KG1vZGVsX3ByZWZfcmVsaWdpb3Vzc2ltX3JvYnVzdGNoZWNrLCBsZXZlbCA9IDAuOTk3KQ0KYGBgDQoNCiMjIyMjIFN0YW5kYXJkaXplZCBDb2VmZmljaWVudHMNCmBgYHtyfQ0Kc3RhbmRhcmRpemVfcGFyYW1ldGVycyhtb2RlbF9wcmVmX3JlbGlnaW91c3NpbV9yb2J1c3RjaGVjaywgbWV0aG9kID0gImJhc2ljIiwgY2kgPSAwLjk5NykNCmBgYA0KDQojIyMjIyBQbG90IHsuYWN0aXZlfQ0KYGBge3J9DQpsbWVyKHByZWZfcmVsaWdpb3Vzc2ltIH4gcG9saXRpY2FsX29yaWVudGF0aW9uICsgYWdlICsgKDErcG9saXRpY2FsX29yaWVudGF0aW9ufGNvdW50cnkpLA0KICAgICAgIGRhdGEgPSBkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQpICU+JQ0KICAgIGFsbEVmZmVjdHMoKSAlPiUNCiAgICBwbG90KCkNCmBgYA0KDQojIyMgSWRlYWwgUGFydG5lciBQcmVmZXJlbmNlcyB7LnRhYnNldH0NCiMjIyMgSDJhIFByZWZlcmVuY2UgZm9yIHRoZSBMZXZlbCBvZiBGaW5hbmNpYWwgU2VjdXJpdHktIFN1Y2Nlc3NmdWxuZXNzIHsudGFic2V0fQ0KSDJhIFRoZXJlIGlzIGEgcG9zaXRpdmUgbGluZWFyIGxpbmsgYmV0d2VlbiByaWdodC13aW5nIHBvbGl0aWNhbCBvcmllbnRhdGlvbiBhbmQgd29tZW7igJlzIHByZWZlcmVuY2VzIGZvciB0aGUgbGV2ZWwgb2YgZmluYW5jaWFsIHNlY3VyaXR5IGFuZCBzdWNjZXNzZnVsbmVzcy4NCk91dGNvbWU6IExldmVsIHJhdGluZ3MgZm9yIHBhcnRuZXIncyBmaW5hbmNpYWwgc2VjdXJpdHktc3VjY2Vzc2Z1bG5lc3MuDQpQcmVkaWN0b3JzOiBQb2xpdGljYWwgT3JpZW50YXRpb24gJiBBZ2UuIFJhbmRvbSBpbnRlcmNlcHQgYW5kIHJhbmRvbSBzbG9wZSBmb3IgY291bnRyeS4NCg0KIyMjIyMgTW9kZWxzDQpgYGB7cn0NCm1vZGVsX3ByZWZfbGV2ZWxfZmluYW5jaWFsbHlfc2VjdXJlX3N1Y2Nlc3NmdWxfYW1iaXRpb3VzX3JvYnVzdGNoZWNrIDwtIGxtZXIocHJlZl9sZXZlbF9maW5hbmNpYWxseV9zZWN1cmVfc3VjY2Vzc2Z1bF9hbWJpdGlvdXMgfiBwb2xpdGljYWxfb3JpZW50YXRpb24gKyBhZ2UgKyAoMStwb2xpdGljYWxfb3JpZW50YXRpb258Y291bnRyeSksIGRhdGEgPSBkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQsIGNvbnRyb2wgPWxtZXJDb250cm9sKG9wdGltaXplciA9ICJib2J5cWEiKSkNCmBgYA0KDQojIyMjIyBTdW1tYXJ5DQpgYGB7cn0NCnN1bW1hcnkobW9kZWxfcHJlZl9sZXZlbF9maW5hbmNpYWxseV9zZWN1cmVfc3VjY2Vzc2Z1bF9hbWJpdGlvdXNfcm9idXN0Y2hlY2spDQpjb25maW50KG1vZGVsX3ByZWZfbGV2ZWxfZmluYW5jaWFsbHlfc2VjdXJlX3N1Y2Nlc3NmdWxfYW1iaXRpb3VzX3JvYnVzdGNoZWNrLCBsZXZlbCA9IDAuOTk3KQ0KYGBgDQoNCiMjIyMjIFN0YW5kYXJkaXplZCBDb2VmZmljaWVudHMNCmBgYHtyfQ0Kc3RhbmRhcmRpemVfcGFyYW1ldGVycyhtb2RlbF9wcmVmX2xldmVsX2ZpbmFuY2lhbGx5X3NlY3VyZV9zdWNjZXNzZnVsX2FtYml0aW91c19yb2J1c3RjaGVjaywgbWV0aG9kID0gImJhc2ljIiwgY2kgPSAwLjk5NykNCmBgYA0KDQojIyMjIyBQbG90IHsuYWN0aXZlfQ0KYGBge3J9DQpsbWVyKHByZWZfbGV2ZWxfZmluYW5jaWFsbHlfc2VjdXJlX3N1Y2Nlc3NmdWxfYW1iaXRpb3VzIH4gcG9saXRpY2FsX29yaWVudGF0aW9uICsgYWdlICsgKDEgKyBwb2xpdGljYWxfb3JpZW50YXRpb258IGNvdW50cnkpLA0KICAgICAgIGRhdGEgPSBkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQpICU+JQ0KICAgIGFsbEVmZmVjdHMoKSAlPiUNCiAgICBwbG90KCkNCmBgYA0KDQojIyMjIEgyYiBQcmVmZXJlbmNlIGZvciB0aGUgTGV2ZWwgb2YgQ29uZmlkZW5jZS1Bc3NlcnRpdmVuZXNzIHsudGFic2V0fQ0KSDJiIFRoZXJlIGlzIGEgcG9zaXRpdmUgbGluZWFyIGxpbmsgYmV0d2VlbiByaWdodC13aW5nIHBvbGl0aWNhbCBvcmllbnRhdGlvbiBhbmQgd29tZW7igJlzIHByZWZlcmVuY2VzIGZvciB0aGUgbGV2ZWwgb2YgY29uZmlkZW5jZSBhbmQgYXNzZXJ0aXZlbmVzcy4gIA0KT3V0Y29tZTogTGV2ZWwgcmF0aW5ncyBmb3IgcGFydG5lcidzIGNvbmZpZGVuY2UtYXNzZXJ0aXZlbmVzcy4NClByZWRpY3RvcnM6IFBvbGl0aWNhbCBPcmllbnRhdGlvbiAmIEFnZS4gUmFuZG9tIGludGVyY2VwdCBhbmQgcmFuZG9tIHNsb3BlIGZvciBjb3VudHJ5Lg0KDQojIyMjIyBNb2RlbHMNCmBgYHtyfQ0KbW9kZWxfcHJlZl9sZXZlbF9jb25maWRlbnRfYXNzZXJ0aXZlX3JvYnVzdGNoZWNrIDwtIGxtZXIocHJlZl9sZXZlbF9jb25maWRlbnRfYXNzZXJ0aXZlIH4gcG9saXRpY2FsX29yaWVudGF0aW9uICsgYWdlICsgKDErcG9saXRpY2FsX29yaWVudGF0aW9ufGNvdW50cnkpLCBkYXRhID0gZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkLCBjb250cm9sID1sbWVyQ29udHJvbChvcHRpbWl6ZXIgPSAiYm9ieXFhIikpIA0KYGBgDQoNCiMjIyMjIFN1bW1hcnkNCmBgYHtyfQ0Kc3VtbWFyeShtb2RlbF9wcmVmX2xldmVsX2NvbmZpZGVudF9hc3NlcnRpdmVfcm9idXN0Y2hlY2spDQpjb25maW50KG1vZGVsX3ByZWZfbGV2ZWxfY29uZmlkZW50X2Fzc2VydGl2ZV9yb2J1c3RjaGVjaywgbGV2ZWwgPSAwLjk5NykNCmBgYA0KDQojIyMjIyBTdGFuZGFyZGl6ZWQgQ29lZmZpY2llbnRzDQpgYGB7cn0NCnN0YW5kYXJkaXplX3BhcmFtZXRlcnMobW9kZWxfcHJlZl9sZXZlbF9jb25maWRlbnRfYXNzZXJ0aXZlX3JvYnVzdGNoZWNrLCBtZXRob2QgPSAiYmFzaWMiLCBjaSA9IDAuOTk3KQ0KYGBgDQoNCiMjIyMjIFBsb3Qgey5hY3RpdmV9DQpgYGB7cn0NCmxtZXIocHJlZl9sZXZlbF9jb25maWRlbnRfYXNzZXJ0aXZlIH4gcG9saXRpY2FsX29yaWVudGF0aW9uICsgYWdlICsgKDEgKyBwb2xpdGljYWxfb3JpZW50YXRpb258Y291bnRyeSksDQogICAgICAgZGF0YSA9IGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCkgJT4lDQogICAgYWxsRWZmZWN0cygpICU+JQ0KICAgIHBsb3QoKQ0KYGBgDQoNCg0KDQojIyMjIEgyYyBQcmVmZXJlbmNlIGZvciB0aGUgTGV2ZWwgb2YgRWR1Y2F0aW9uLUludGVsbGlnZW5jZSB7LnRhYnNldH0NCkgyYyBUaGVyZSBpcyBubyBsaW5rIGJldHdlZW4gcmlnaHQtd2luZyBwb2xpdGljYWwgb3JpZW50YXRpb24gYW5kIHdvbWVu4oCZcyBwcmVmZXJlbmNlcyBmb3IgdGhlIGxldmVsIG9mIGVkdWNhdGlvbiBhbmQgaW50ZWxsaWdlbmNlLiAgDQpPdXRjb21lOiBMZXZlbCByYXRpbmdzIGZvciBwYXJ0bmVyJ3MgZWR1Y2F0aW9uLWludGVsbGlnZW5jZS4NClByZWRpY3RvcnM6IFBvbGl0aWNhbCBPcmllbnRhdGlvbiAmIEFnZS4gUmFuZG9tIGludGVyY2VwdCBhbmQgcmFuZG9tIHNsb3BlIGZvciBjb3VudHJ5Lg0KDQojIyMjIyBNb2RlbHMNCmBgYHtyfQ0KbW9kZWxfcHJlZl9sZXZlbF9pbnRlbGxpZ2VuY2VfZWR1Y2F0ZWRfcm9idXN0Y2hlY2sgPC0gbG1lcihwcmVmX2xldmVsX2ludGVsbGlnZW5jZV9lZHVjYXRlZCB+IHBvbGl0aWNhbF9vcmllbnRhdGlvbiArIGFnZSArICgxK3BvbGl0aWNhbF9vcmllbnRhdGlvbnxjb3VudHJ5KSwgZGF0YSA9IGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCwgY29udHJvbCA9bG1lckNvbnRyb2wob3B0aW1pemVyID0gImJvYnlxYSIpKQ0KYGBgDQoNCiMjIyMjIFN1bW1hcnkNCmBgYHtyfQ0Kc3VtbWFyeShtb2RlbF9wcmVmX2xldmVsX2ludGVsbGlnZW5jZV9lZHVjYXRlZF9yb2J1c3RjaGVjaykNCmNvbmZpbnQobW9kZWxfcHJlZl9sZXZlbF9pbnRlbGxpZ2VuY2VfZWR1Y2F0ZWRfcm9idXN0Y2hlY2ssIGxldmVsID0gMC45OTcpDQpgYGANCg0KIyMjIyMgU3RhbmRhcmRpemVkIENvZWZmaWNpZW50cw0KYGBge3J9DQpzdGFuZGFyZGl6ZV9wYXJhbWV0ZXJzKG1vZGVsX3ByZWZfbGV2ZWxfaW50ZWxsaWdlbmNlX2VkdWNhdGVkX3JvYnVzdGNoZWNrLCBtZXRob2QgPSAiYmFzaWMiLCBjaSA9IDAuOTk3KQ0KDQpgYGANCg0KIyMjIyMgUGxvdCB7LmFjdGl2ZX0NCmBgYHtyfQ0KbG1lcihwcmVmX2xldmVsX2ludGVsbGlnZW5jZV9lZHVjYXRlZCB+IHBvbGl0aWNhbF9vcmllbnRhdGlvbiArIGFnZSArICgxICsgcG9saXRpY2FsX29yaWVudGF0aW9ufGNvdW50cnkpLA0KICAgICAgIGRhdGEgPSBkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQpICU+JQ0KICAgIGFsbEVmZmVjdHMoKSAlPiUNCiAgICBwbG90KCkNCmBgYA0KDQoNCg0KIyMjIyBIMmQgUHJlZmVyZW5jZSBmb3IgdGhlIExldmVsIG9mIEtpbmRuZXNzLVN1cHBvcnRpdmVuZXNzIHsudGFic2V0fQ0KSDJkIFRoZXJlIGlzIG5vIGxpbmsgYmV0d2VlbiByaWdodC13aW5nIHBvbGl0aWNhbCBvcmllbnRhdGlvbiBhbmQgd29tZW7igJlzIHByZWZlcmVuY2VzIGZvciB0aGUgbGV2ZWwgb2Yga2luZG5lc3MgYW5kIHN1cHBvcnRpdmVuZXNzLiAgDQpPdXRjb21lOiBMZXZlbCByYXRpbmdzIGZvciBwYXJ0bmVyJ3Mga2luZG5lc3Mtc3VwcG9ydGl2ZW5lc3MuDQpQcmVkaWN0b3JzOiBQb2xpdGljYWwgT3JpZW50YXRpb24gJiBBZ2UuIFJhbmRvbSBpbnRlcmNlcHQgYW5kIHJhbmRvbSBzbG9wZSBmb3IgY291bnRyeS4NCg0KIyMjIyMgTW9kZWxzDQpgYGB7cn0NCm1vZGVsX3ByZWZfbGV2ZWxfa2luZF9zdXBwb3J0aXZlX3JvYnVzdGNoZWNrIDwtIGxtZXIocHJlZl9sZXZlbF9raW5kX3N1cHBvcnRpdmUgfiBwb2xpdGljYWxfb3JpZW50YXRpb24gKyBhZ2UgKyAoMStwb2xpdGljYWxfb3JpZW50YXRpb258Y291bnRyeSksIGRhdGEgPSBkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQsIGNvbnRyb2wgPWxtZXJDb250cm9sKG9wdGltaXplciA9ICJib2J5cWEiKSkNCmBgYA0KDQojIyMjIyBTdW1tYXJ5DQpgYGB7cn0NCnN1bW1hcnkobW9kZWxfcHJlZl9sZXZlbF9raW5kX3N1cHBvcnRpdmVfcm9idXN0Y2hlY2spDQpjb25maW50KG1vZGVsX3ByZWZfbGV2ZWxfa2luZF9zdXBwb3J0aXZlX3JvYnVzdGNoZWNrLCBsZXZlbCA9IDAuOTk3KQ0KYGBgDQoNCiMjIyMjIFN0YW5kYXJkaXplZCBDb2VmZmljaWVudHMNCmBgYHtyfQ0Kc3RhbmRhcmRpemVfcGFyYW1ldGVycyhtb2RlbF9wcmVmX2xldmVsX2tpbmRfc3VwcG9ydGl2ZV9yb2J1c3RjaGVjaywgbWV0aG9kID0gImJhc2ljIiwgY2kgPSAwLjk5NykNCg0KDQpgYGANCg0KIyMjIyMgUGxvdCB7LmFjdGl2ZX0NCmBgYHtyfQ0KbG1lcihwcmVmX2xldmVsX2tpbmRfc3VwcG9ydGl2ZSB+IHBvbGl0aWNhbF9vcmllbnRhdGlvbiArIGFnZSArICgxICsgcG9saXRpY2FsX29yaWVudGF0aW9ufGNvdW50cnkpLA0KICAgICAgIGRhdGEgPSBkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQpICU+JQ0KICAgIGFsbEVmZmVjdHMoKSAlPiUNCiAgICBwbG90KCkNCmBgYA0KDQojIyMjIEgyZSBQcmVmZXJlbmNlIGZvciB0aGUgTGV2ZWwgb2YgQXR0cmFjdGl2ZW5lc3Mgey50YWJzZXR9DQpIMmUgVGhlcmUgaXMgbm8gbGluayBiZXR3ZWVuIHJpZ2h0LXdpbmcgcG9saXRpY2FsIG9yaWVudGF0aW9uIGFuZCB3b21lbuKAmXMgcHJlZmVyZW5jZXMgZm9yIHRoZSBsZXZlbCBvZiBhdHRyYWN0aXZlbmVzcy4gIA0KT3V0Y29tZTogTGV2ZWwgcmF0aW5ncyBmb3IgcGFydG5lcidzIGF0dHJhY3RpdmVuZXNzLg0KUHJlZGljdG9yczogUG9saXRpY2FsIE9yaWVudGF0aW9uICYgQWdlLiBSYW5kb20gaW50ZXJjZXB0IGFuZCByYW5kb20gc2xvcGUgZm9yIGNvdW50cnkuDQoNCiMjIyMjIE1vZGVscw0KYGBge3J9DQptb2RlbF9wcmVmX2xldmVsX2F0dHJhY3RpdmVuZXNzX3JvYnVzdGNoZWNrIDwtIGxtZXIocHJlZl9sZXZlbF9hdHRyYWN0aXZlbmVzcyB+IHBvbGl0aWNhbF9vcmllbnRhdGlvbiArIGFnZSArICgxK3BvbGl0aWNhbF9vcmllbnRhdGlvbnxjb3VudHJ5KSwgZGF0YSA9IGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCwgY29udHJvbCA9bG1lckNvbnRyb2wob3B0aW1pemVyID0gImJvYnlxYSIpKQ0KYGBgDQoNCiMjIyMjIFN1bW1hcnkNCmBgYHtyfQ0Kc3VtbWFyeShtb2RlbF9wcmVmX2xldmVsX2F0dHJhY3RpdmVuZXNzX3JvYnVzdGNoZWNrKQ0KY29uZmludChtb2RlbF9wcmVmX2xldmVsX2F0dHJhY3RpdmVuZXNzX3JvYnVzdGNoZWNrLCBsZXZlbCA9IDAuOTk3KQ0KYGBgDQoNCiMjIyMjIFN0YW5kYXJkaXplZCBDb2VmZmljaWVudHMNCmBgYHtyfQ0Kc3RhbmRhcmRpemVfcGFyYW1ldGVycyhtb2RlbF9wcmVmX2xldmVsX2F0dHJhY3RpdmVuZXNzX3JvYnVzdGNoZWNrLCBtZXRob2QgPSAiYmFzaWMiLCBjaSA9IDAuOTk3KQ0KYGBgDQoNCiMjIyMjIFBsb3Qgey5hY3RpdmV9DQpgYGB7cn0NCmxtZXIocHJlZl9sZXZlbF9hdHRyYWN0aXZlbmVzcyB+IHBvbGl0aWNhbF9vcmllbnRhdGlvbiArIGFnZSArICgxICsgcG9saXRpY2FsX29yaWVudGF0aW9ufCBjb3VudHJ5KSwNCiAgICAgICBkYXRhID0gZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkKSAlPiUNCiAgICBhbGxFZmZlY3RzKCkgJT4lDQogICAgcGxvdCgpDQpgYGANCg0KDQoNCiMjIyBJZGVhbCBBZ2UgYW5kIEhlaWdodCB7LnRhYnNldH0NCiMjIyMgSDNhKDEpIEltcG9ydGFuY2UgUmF0aW5ncyBmb3IgUGFydG5lcidzIEFnZSB7LnRhYnNldH0NCkgzYSgxKSBUaGVyZSBpcyBhIHBvc2l0aXZlIGxpbmVhciBsaW5rIGJldHdlZW4gcmlnaHQtd2luZyBwb2xpdGljYWwgb3JpZW50YXRpb24gYW5kIHdvbWVu4oCZcyBpbXBvcnRhbmNlIHJhdGluZ3MgZm9yIHBhcnRuZXLigJlzIGFnZS4gDQpPdXRjb21lOiBJbXBvcnRhbmNlIHJhdGluZ3MgZm9yIHBhcnRuZXIncyBhZ2UuDQpQcmVkaWN0b3JzOiBQb2xpdGljYWwgT3JpZW50YXRpb24gJiBBZ2UuIFJhbmRvbSBpbnRlcmNlcHQgYW5kIHJhbmRvbSBzbG9wZSBmb3IgY291bnRyeS4NCg0KIyMjIyMgTW9kZWxzDQpgYGB7cn0NCm1vZGVsX2ltcF9hZ2Vfcm9idXN0Y2hlY2sgPC0gbG1lcihpbXBfYWdlIH4gcG9saXRpY2FsX29yaWVudGF0aW9uICsgYWdlICsgKDErcG9saXRpY2FsX29yaWVudGF0aW9ufGNvdW50cnkpLCBkYXRhID0gZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkLCBjb250cm9sID1sbWVyQ29udHJvbChvcHRpbWl6ZXIgPSAiYm9ieXFhIikpDQpgYGANCg0KIyMjIyMgU3VtbWFyeQ0KYGBge3J9DQpzdW1tYXJ5KG1vZGVsX2ltcF9hZ2Vfcm9idXN0Y2hlY2spDQpjb25maW50KG1vZGVsX2ltcF9hZ2Vfcm9idXN0Y2hlY2ssIGxldmVsPSAwLjk5NykNCmBgYA0KDQojIyMjIyBTdGFuZGFyZGl6ZWQgQ29lZmZpY2llbnRzDQpgYGB7cn0NCnN0YW5kYXJkaXplX3BhcmFtZXRlcnMobW9kZWxfaW1wX2FnZV9yb2J1c3RjaGVjaywgbWV0aG9kID0gImJhc2ljIiwgY2kgPSAwLjk5NykNCmBgYA0KDQojIyMjIyBQbG90IHsuYWN0aXZlfQ0KYGBge3J9DQpsbWVyKGltcF9hZ2UgfiBwb2xpdGljYWxfb3JpZW50YXRpb24gKyBhZ2UgKyAoMStwb2xpdGljYWxfb3JpZW50YXRpb258Y291bnRyeSksDQogICAgICAgZGF0YSA9IGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCkgJT4lDQogICAgYWxsRWZmZWN0cygpICU+JQ0KICAgIHBsb3QoKQ0KYGBgDQoNCiMjIyMgSDNhKDIpIExldmVsIFJhdGluZ3MgZm9yIFBhcnRuZXIncyBBZ2Ugey50YWJzZXR9DQpIM2EoMikgVGhlcmUgaXMgYSBwb3NpdGl2ZSBsaW5lYXIgbGluayBiZXR3ZWVuIHJpZ2h0LXdpbmcgcG9saXRpY2FsIG9yaWVudGF0aW9uIGFuZCB0aGUgcmVsYXRpdmUgYWdlIGRpc2NyZXBhbmN5IGJldHdlZW4gaWRlYWwgcGFydG5lcuKAmXMgYWdlIGFuZCB3b21lbuKAmXMgYWdlLiAoZGlzY3JlcGFuY3kgY2FsY3VsYXRlZCBhcyBpZGVhbCBwYXJ0bmVy4oCZcyBhZ2Ug4oCTIHdvbWVu4oCZcyBhZ2UpDQpPdXRjb21lOiBEaXNjcmVwYW5jeSBiZXR3ZWVuIGxldmVsIHJhdGluZ3MgZm9yIGlkZWFsIHBhcnRuZXIncyBhZ2UgYW5kIHdvbWVuJ3MgYWdlIChpZGVhbF9hZ2VfcmVsKQ0KUHJlZGljdG9yczogUG9saXRpY2FsIE9yaWVudGF0aW9uICYgQWdlLiBSYW5kb20gaW50ZXJjZXB0IGFuZCByYW5kb20gc2xvcGUgZm9yIGNvdW50cnkuDQoNCiMjIyMjIE1vZGVscw0KYGBge3J9DQptb2RlbF9pZGVhbF9hZ2VfcmVsX3JvYnVzdGNoZWNrIDwtIGxtZXIoaWRlYWxfYWdlX3JlbCB+IHBvbGl0aWNhbF9vcmllbnRhdGlvbiArIGFnZSArICgxK3BvbGl0aWNhbF9vcmllbnRhdGlvbnxjb3VudHJ5KSwgZGF0YSA9IGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCwgY29udHJvbCA9bG1lckNvbnRyb2wob3B0aW1pemVyID0gImJvYnlxYSIpKQ0KYGBgDQoNCiMjIyMjIFN1bW1hcnkNCmBgYHtyfQ0Kc3VtbWFyeShtb2RlbF9pZGVhbF9hZ2VfcmVsX3JvYnVzdGNoZWNrKQ0KY29uZmludChtb2RlbF9pZGVhbF9hZ2VfcmVsX3JvYnVzdGNoZWNrLCBsZXZlbCA9IDAuOTk3KQ0KYGBgDQoNCiMjIyMjIFN0YW5kYXJkaXplZCBDb2VmZmljaWVudHMNCmBgYHtyfQ0Kc3RhbmRhcmRpemVfcGFyYW1ldGVycyhtb2RlbF9pZGVhbF9hZ2VfcmVsX3JvYnVzdGNoZWNrLCBtZXRob2QgPSAiYmFzaWMiLCBjaSA9IDAuOTk3KQ0KYGBgDQoNCiMjIyMjIFBsb3Qgey5hY3RpdmV9DQpgYGB7cn0NCmxtZXIoaWRlYWxfYWdlX3JlbCB+IHBvbGl0aWNhbF9vcmllbnRhdGlvbiArIGFnZSArICgxK3BvbGl0aWNhbF9vcmllbnRhdGlvbnxjb3VudHJ5KSwNCiAgICAgICBkYXRhID0gZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkKSAlPiUNCiAgICBhbGxFZmZlY3RzKCkgJT4lDQogICAgcGxvdCgpDQpgYGANCg0KIyMjIyBIM2IoMSkgSW1wb3J0YW5jZSBSYXRpbmdzIGZvciBQYXJ0bmVyJ3MgSGVpZ2h0IHsudGFic2V0fQ0KSDNiKDEpIFRoZXJlIGlzIGEgcG9zaXRpdmUgbGluZWFyIGxpbmsgYmV0d2VlbiByaWdodC13aW5nIHBvbGl0aWNhbCBvcmllbnRhdGlvbiBhbmQgd29tZW7igJlzIGltcG9ydGFuY2UgcmF0aW5ncyBmb3IgcGFydG5lcuKAmXMgaGVpZ2h0Lg0KT3V0Y29tZTogSW1wb3J0YW5jZSByYXRpbmdzIGZvciBwYXJ0bmVyJ3MgaGVpZ2h0Lg0KUHJlZGljdG9yczogUG9saXRpY2FsIE9yaWVudGF0aW9uICYgQWdlLiBSYW5kb20gaW50ZXJjZXB0IGFuZCByYW5kb20gc2xvcGUgZm9yIGNvdW50cnkuDQoNCiMjIyMjIE1vZGVscw0KYGBge3J9DQptb2RlbF9pbXBfaGVpZ2h0X3JvYnVzdGNoZWNrIDwtIGxtZXIoaW1wX2hlaWdodCB+IHBvbGl0aWNhbF9vcmllbnRhdGlvbiArIGFnZSArICgxK3BvbGl0aWNhbF9vcmllbnRhdGlvbnxjb3VudHJ5KSwgZGF0YSA9IGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCwgY29udHJvbCA9bG1lckNvbnRyb2wob3B0aW1pemVyID0gImJvYnlxYSIpKQ0KYGBgDQoNCiMjIyMjIFN1bW1hcnkNCmBgYHtyfQ0Kc3VtbWFyeShtb2RlbF9pbXBfaGVpZ2h0X3JvYnVzdGNoZWNrKQ0KY29uZmludChtb2RlbF9pbXBfaGVpZ2h0X3JvYnVzdGNoZWNrLCBsZXZlbCA9IDAuOTk3KQ0KYGBgDQoNCiMjIyMjIFN0YW5kYXJkaXplZCBDb2VmZmljaWVudHMNCmBgYHtyfQ0Kc3RhbmRhcmRpemVfcGFyYW1ldGVycyhtb2RlbF9pbXBfaGVpZ2h0X3JvYnVzdGNoZWNrLCBtZXRob2QgPSAiYmFzaWMiLCBjaSA9IDAuOTk3KQ0KYGBgDQoNCiMjIyMjIFBsb3Qgey5hY3RpdmV9DQpgYGB7cn0NCmxtZXIoaW1wX2hlaWdodCB+IHBvbGl0aWNhbF9vcmllbnRhdGlvbiArIGFnZSArICgxICsgcG9saXRpY2FsX29yaWVudGF0aW9ufCBjb3VudHJ5KSwNCiAgICAgICBkYXRhID0gZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkKSAlPiUNCiAgICBhbGxFZmZlY3RzKCkgJT4lDQogICAgcGxvdCgpDQpgYGANCg0KIyMjIyBIM2IoMikgTGV2ZWwgUmF0aW5ncyBmb3IgUGFydG5lcidzIEhlaWdodCB7LnRhYnNldH0NCkgzYigyKSBUaGVyZSBpcyBhIHBvc2l0aXZlIGxpbmVhciBsaW5rIGJldHdlZW4gcmlnaHQtd2luZyBwb2xpdGljYWwgb3JpZW50YXRpb24gYW5kIGlkZWFsIHBhcnRuZXLigJlzIGhlaWdodC4NCk91dGNvbWU6IExldmVsIHJhdGluZ3MgZm9yIGlkZWFsIHBhcnRuZXIncyBoZWlnaHQuDQpQcmVkaWN0b3JzOiBQb2xpdGljYWwgT3JpZW50YXRpb24gJiBBZ2UuIFJhbmRvbSBpbnRlcmNlcHQgYW5kIHJhbmRvbSBzbG9wZSBmb3IgY291bnRyeS4NCg0KIyMjIyMgTW9kZWxzDQpgYGB7cn0NCm1vZGVsX2lkZWFsX2hlaWdodF9yb2J1c3RjaGVjayA8LSBsbWVyKGlkZWFsX2hlaWdodCB+IHBvbGl0aWNhbF9vcmllbnRhdGlvbiArIGFnZSArICgxK3BvbGl0aWNhbF9vcmllbnRhdGlvbnxjb3VudHJ5KSwgZGF0YSA9IGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCwgY29udHJvbCA9IGxtZXJDb250cm9sKG9wdGltaXplciA9ICJib2J5cWEiKSkNCmBgYA0KDQojIyMjIyBTdW1tYXJ5DQpgYGB7cn0NCnN1bW1hcnkobW9kZWxfaWRlYWxfaGVpZ2h0X3JvYnVzdGNoZWNrKQ0KY29uZmludChtb2RlbF9pZGVhbF9oZWlnaHRfcm9idXN0Y2hlY2ssIGxldmVsID0gMC45OTcpDQpgYGANCg0KIyMjIyMgU3RhbmRhcmRpemVkIENvZWZmaWNpZW50cw0KYGBge3J9DQpzdGFuZGFyZGl6ZV9wYXJhbWV0ZXJzKG1vZGVsX2lkZWFsX2hlaWdodF9yb2J1c3RjaGVjaywgbWV0aG9kID0gImJhc2ljIiwgY2kgPSAwLjk5NykNCmBgYA0KDQojIyMjIyBQbG90IHsuYWN0aXZlfQ0KYGBge3J9DQpsbWVyKGlkZWFsX2hlaWdodCB+IHBvbGl0aWNhbF9vcmllbnRhdGlvbiArIGFnZSArICgxICsgcG9saXRpY2FsX29yaWVudGF0aW9ufCBjb3VudHJ5KSwNCiAgICAgICBkYXRhID0gZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkKSAlPiUNCiAgICBhbGxFZmZlY3RzKCkgJT4lDQogICAgcGxvdCgpDQpgYGANCg==