Here, we perform additional robustness checks including age in each model as a covariate.
## Lade nötiges Paket: carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
## Lade nötiges Paket: Matrix
##
## Attache Paket: 'sjstats'
## Die folgenden Objekte sind maskiert von 'package:effectsize':
##
## cohens_f, cramers_v, phi
##
## Attache Paket: 'lmerTest'
## Das folgende Objekt ist maskiert 'package:lme4':
##
## lmer
## Das folgende Objekt ist maskiert 'package:stats':
##
## step
##
## Attache Paket: 'dplyr'
## Die folgenden Objekte sind maskiert von 'package:formr':
##
## first, last
## Die folgenden Objekte sind maskiert von 'package:stats':
##
## filter, lag
## Die folgenden Objekte sind maskiert von 'package:base':
##
## intersect, setdiff, setequal, union
Load selected data based on 03_codebook
H1a(1) There is no linear link between right-wing political orientation and women’s preferences for partner’s similar political beliefs and values. H1a(2) There is a positive quadratic link between right-wing political orientation and women’s preferences for partner’s similar political beliefs and values. Outcome: Preference ratings for partner’s similar political beliefs and values. Predictors: Political Orientation & Age. Random intercept and random slope for country.
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## pref_politicalsim ~ political_orientation + age + (1 + political_orientation |
## country)
## Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 52404.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5217 -0.6811 0.1268 0.7383 2.2603
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 0.7130 0.8444
## political_orientation 0.0326 0.1806 -0.83
## Residual 3.3023 1.8172
## Number of obs: 12946, groups: country, 144
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.692e+00 1.338e-01 1.049e+02 20.116 <2e-16 ***
## political_orientation -7.417e-02 3.175e-02 4.687e+01 -2.336 0.0238 *
## age 2.853e-02 2.356e-03 1.291e+04 12.112 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.759
## age -0.439 0.021
## Computing profile confidence intervals ...
## 0.15 % 99.85 %
## .sig01 0.56024595 1.22559147
## .sig02 -0.95021383 -0.46510688
## .sig03 0.10187680 0.29165818
## .sigma 1.78396082 1.85138428
## (Intercept) 2.27776577 3.09149283
## political_orientation -0.16911363 0.02952843
## age 0.02153767 0.03552314
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation -0.0528 0.997 -0.120 0.0143
## 3 age 0.103 0.997 0.0775 0.128
lmer(pref_politicalsim ~ political_orientation + age + (1+political_orientation|country),
data = data_included_documented) %>%
allEffects() %>%
plot()
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00397324 (tol = 0.002, component 1)
Here, we are examining the quadratic effect of right-wing political orientation on preferred political similarity in a partner controlling for age using the Two Lines Approach (Simonsohn, 2018). We are using the Robin Hood Algorithm in order to set the breaking point. Then, we are calculating two multilevel regressions on either side of the breaking point. Outcome: Preference ratings for partner’s similar political beliefs and values. Predictors: Political Orientation & Age. Random intercept and random slope for country.
See 11_twolines_analyses_multilevel
model_pref_politicalsim_1_robustcheck = lmer(pref_politicalsim ~ political_orientation + age +
(1+political_orientation|country),
data = data_included_documented %>%
dplyr::filter(political_orientation <= 3), control =lmerControl(optimizer = "bobyqa"))
summary(model_pref_politicalsim_1_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## pref_politicalsim ~ political_orientation + age + (1 + political_orientation |
## country)
## Data: data_included_documented %>% dplyr::filter(political_orientation <=
## 3)
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 42551.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7593 -0.6977 0.1446 0.7186 2.3337
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 0.62089 0.7880
## political_orientation 0.05005 0.2237 -0.74
## Residual 3.14588 1.7737
## Number of obs: 10633, groups: country, 138
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.135e+00 1.383e-01 7.205e+01 22.666 <2e-16 ***
## political_orientation -3.030e-01 4.200e-02 2.907e+01 -7.214 6e-08 ***
## age 2.756e-02 2.559e-03 1.060e+04 10.767 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.730
## age -0.463 0.021
## Computing profile confidence intervals ...
## 0.15 % 99.85 %
## .sig01 0.46632087 1.2306668
## .sig02 -0.92602352 -0.1616867
## .sig03 0.09393412 0.4034475
## .sigma 1.73786214 1.8106810
## (Intercept) 2.67745475 3.5563482
## political_orientation -0.42985824 -0.1479782
## age 0.01996013 0.0351559
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation -0.164 0.997 -0.231 -0.0965
## 3 age 0.0984 0.997 0.0713 0.126
model_pref_politicalsim_2_robustcheck = lmer(pref_politicalsim ~ political_orientation + age +
(1+political_orientation|country),
data = data_included_documented %>%
dplyr::filter(political_orientation >= 3), control =lmerControl(optimizer = "bobyqa"))
summary(model_pref_politicalsim_2_robustcheck)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## pref_politicalsim ~ political_orientation + age + (1 + political_orientation |
## country)
## Data: data_included_documented %>% dplyr::filter(political_orientation >=
## 3)
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 29754.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0355 -0.8181 0.1015 0.7168 2.2669
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 0.7411 0.8609
## political_orientation 0.0311 0.1763 -0.81
## Residual 3.2812 1.8114
## Number of obs: 7356, groups: country, 129
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 9.904e-01 1.925e-01 3.369e+01 5.144 1.14e-05 ***
## political_orientation 4.090e-01 4.546e-02 2.269e+01 8.996 6.10e-09 ***
## age 2.643e-02 3.137e-03 7.337e+03 8.425 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.838
## age -0.392 0.002
## Computing profile confidence intervals ...
## 0.15 % 99.85 %
## .sig01 0.31552709 1.64154220
## .sig02 -0.97162975 0.91451883
## .sig03 0.03947407 0.37782267
## .sigma 1.76753258 1.85696350
## (Intercept) 0.41240088 1.68463907
## political_orientation 0.23621054 0.55393090
## age 0.01711562 0.03573698
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation 0.175 0.997 0.117 0.233
## 3 age 0.0943 0.997 0.0611 0.128
H1b There is a positive linear link between right-wing political orientation and women’s preferences for partner’s similar ethnicity/race. Outcome: Preference ratings for partner’s similar ethnicity/race. Predictors: Political Orientation & Age. Random intercept and random slope for country.
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## pref_ethnicalsim ~ political_orientation + age + (1 + political_orientation |
## country)
## Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 30430.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2779 -0.4648 -0.0409 0.6023 2.4234
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 0.080758 0.28418
## political_orientation 0.006377 0.07986 -0.40
## Residual 1.955411 1.39836
## Number of obs: 8641, groups: country, 127
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.805e+00 8.451e-02 6.408e+01 33.188 < 2e-16 ***
## political_orientation 1.420e-01 2.040e-02 2.529e+01 6.962 2.52e-07 ***
## age 5.262e-03 2.158e-03 8.636e+03 2.438 0.0148 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.572
## age -0.637 0.018
## Computing profile confidence intervals ...
## 0.15 % 99.85 %
## .sig01 0.104270231 0.5667020
## .sig02 -0.879729688 0.8025576
## .sig03 0.030113496 0.1646519
## .sigma 1.367138420 1.4306733
## (Intercept) 2.553361718 3.0755480
## political_orientation 0.071592573 0.2033169
## age -0.001137014 0.0116801
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation 0.129 0.997 0.0742 0.184
## 3 age 0.0258 0.997 -0.00562 0.0573
H1c There is a positive linear link between right-wing political
orientation and women’s preferences for partner’s similar religious
beliefs.
Outcome: Preference ratings for partner’s similar religious beliefs.
Predictors: Political Orientation & Age. Random intercept and random
slope for country.
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## pref_religioussim ~ political_orientation + age + (1 + political_orientation |
## country)
## Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 56373.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.44074 -1.00588 0.05918 0.84691 2.04253
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 0.403206 0.63499
## political_orientation 0.006292 0.07932 -0.36
## Residual 4.519047 2.12581
## Number of obs: 12934, groups: country, 144
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.137e+00 1.200e-01 6.933e+01 17.803 < 2e-16 ***
## political_orientation 1.781e-01 2.255e-02 2.561e+01 7.895 2.52e-08 ***
## age 3.327e-02 2.751e-03 1.291e+04 12.094 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.518
## age -0.570 0.033
## Computing profile confidence intervals ...
## 0.15 % 99.85 %
## .sig01 0.33549165 1.04178607
## .sig02 -0.91036705 0.94115335
## .sig03 0.02031065 0.17154676
## .sigma 2.08691097 2.16580486
## (Intercept) 1.75400882 2.57186768
## political_orientation 0.07661313 0.26975566
## age 0.02508655 0.04142527
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation 0.110 0.997 0.0688 0.152
## 3 age 0.104 0.997 0.0787 0.130
H2a There is a positive linear link between right-wing political orientation and women’s preferences for the level of financial security and successfulness. Outcome: Level ratings for partner’s financial security-successfulness. Predictors: Political Orientation & Age. Random intercept and random slope for country.
model_pref_level_financially_secure_successful_ambitious_robustcheck <- lmer(pref_level_financially_secure_successful_ambitious ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control =lmerControl(optimizer = "bobyqa"))
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## pref_level_financially_secure_successful_ambitious ~ political_orientation +
## age + (1 + political_orientation | country)
## Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 31651.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.8169 -0.6960 0.0004 0.6958 2.6418
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 0.1341548 0.36627
## political_orientation 0.0009063 0.03011 -1.00
## Residual 0.7195492 0.84826
## Number of obs: 12548, groups: country, 143
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 4.125e+00 5.499e-02 1.352e+02 75.004 <2e-16 ***
## political_orientation 7.306e-02 6.808e-03 9.832e+01 10.731 <2e-16 ***
## age 9.398e-03 1.114e-03 1.251e+04 8.439 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.689
## age -0.509 0.056
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Computing profile confidence intervals ...
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig02: falling back to linear interpolation
## 0.15 % 99.85 %
## .sig01 0.253369012 0.52378807
## .sig02 -1.006492439 -0.63548979
## .sig03 0.008973381 0.05673334
## .sigma 0.835930822 0.85796383
## (Intercept) 3.960542261 4.30049507
## political_orientation 0.047481689 0.09489592
## age 0.006092425 0.01270256
standardize_parameters(model_pref_level_financially_secure_successful_ambitious_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation 0.110 0.997 0.0799 0.141
## 3 age 0.0724 0.997 0.0469 0.0978
H2b There is a positive linear link between right-wing political
orientation and women’s preferences for the level of confidence and
assertiveness.
Outcome: Level ratings for partner’s confidence-assertiveness.
Predictors: Political Orientation & Age. Random intercept and random
slope for country.
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pref_level_confident_assertive ~ political_orientation + age +
## (1 + political_orientation | country)
## Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 28704.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.8511 -0.6602 -0.0056 0.6702 3.1600
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 0.1559960 0.39496
## political_orientation 0.0008448 0.02906 -0.54
## Residual 0.5512740 0.74248
## Number of obs: 12694, groups: country, 144
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 4.062e+00 5.346e-02 1.634e+02 75.99 < 2e-16 ***
## political_orientation 3.342e-02 7.958e-03 2.318e+01 4.20 0.000338 ***
## age 1.481e-02 9.729e-04 1.265e+04 15.22 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.510
## age -0.456 0.036
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig02: falling back to linear interpolation
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## Reduktion auf einmalige 'x' Werte
## 0.15 % 99.85 %
## .sig01 0.293536620 0.53171540
## .sig02 -0.967408639 0.18411111
## .sig03 0.006596638 0.06129999
## .sigma 0.728761947 0.75657040
## (Intercept) 3.902864943 4.22349455
## political_orientation 0.007092236 0.05784956
## age 0.011922193 0.01769817
standardize_parameters(model_pref_level_confident_assertive_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation 0.0540 0.997 0.0158 0.0922
## 3 age 0.121 0.997 0.0976 0.145
H2c There is no link between right-wing political orientation and
women’s preferences for the level of education and intelligence.
Outcome: Level ratings for partner’s education-intelligence. Predictors:
Political Orientation & Age. Random intercept and random slope for
country.
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pref_level_intelligence_educated ~ political_orientation + age +
## (1 + political_orientation | country)
## Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 30053.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.2127 -0.6821 0.0344 0.6903 2.1844
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 0.0652437 0.25543
## political_orientation 0.0009699 0.03114 -0.24
## Residual 0.6129668 0.78292
## Number of obs: 12720, groups: country, 141
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 4.569e+00 4.586e-02 1.482e+02 99.625 <2e-16 ***
## political_orientation 2.328e-02 8.625e-03 2.888e+01 2.699 0.0115 *
## age 9.386e-03 1.020e-03 1.270e+04 9.198 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.484
## age -0.554 0.030
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig02: falling back to linear interpolation
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## Reduktion auf einmalige 'x' Werte
## 0.15 % 99.85 %
## .sig01 0.171745467 0.37101593
## .sig02 -0.802102795 0.57378389
## .sig03 0.009368868 0.06422238
## .sigma 0.768481172 0.79774218
## (Intercept) 4.431590141 4.71156031
## political_orientation -0.003998975 0.05323338
## age 0.006355401 0.01241385
standardize_parameters(model_pref_level_intelligence_educated_robustcheck, method = "basic", ci = 0.997)
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation 0.0386 0.997 -0.00384 0.0810
## 3 age 0.0791 0.997 0.0536 0.105
lmer(pref_level_intelligence_educated ~ political_orientation + age + (1 + political_orientation|country),
data = data_included_documented) %>%
allEffects() %>%
plot()
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0107601 (tol = 0.002, component 1)
H2d There is no link between right-wing political orientation and
women’s preferences for the level of kindness and supportiveness.
Outcome: Level ratings for partner’s kindness-supportiveness.
Predictors: Political Orientation & Age. Random intercept and random
slope for country.
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pref_level_kind_supportive ~ political_orientation + age + (1 +
## political_orientation | country)
## Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 26526.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.9140 -0.6667 0.0855 0.8305 1.8003
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 1.615e-02 0.127072
## political_orientation 7.437e-05 0.008624 0.62
## Residual 4.663e-01 0.682850
## Number of obs: 12726, groups: country, 143
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.040e+00 3.163e-02 1.631e+02 159.327 < 2e-16 ***
## political_orientation 1.267e-02 4.891e-03 1.475e+01 2.590 0.0207 *
## age 4.959e-03 8.925e-04 1.266e+04 5.556 2.81e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.323
## age -0.700 0.049
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig01
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig01: falling back to linear interpolation
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig02: falling back to linear interpolation
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## Reduktion auf einmalige 'x' Werte
## 0.15 % 99.85 %
## .sig01 0.101705922 0.204797206
## .sig02 -1.000000000 1.000000000
## .sig03 0.000000000 0.033780054
## .sigma 0.670273117 0.695760649
## (Intercept) 4.946227706 5.137257935
## political_orientation -0.003624704 0.029108389
## age 0.002304326 0.007608436
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation 0.0246 0.997 -0.00360 0.0529
## 3 age 0.0487 0.997 0.0227 0.0748
lmer(pref_level_kind_supportive ~ political_orientation + age + (1 + political_orientation|country),
data = data_included_documented) %>%
allEffects() %>%
plot()
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00588346 (tol = 0.002, component 1)
H2e There is no link between right-wing political orientation and
women’s preferences for the level of attractiveness.
Outcome: Level ratings for partner’s attractiveness. Predictors:
Political Orientation & Age. Random intercept and random slope for
country.
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pref_level_attractiveness ~ political_orientation + age + (1 +
## political_orientation | country)
## Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 32911.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.6614 -0.6495 -0.0217 0.6475 2.5267
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 0.0109929 0.10485
## political_orientation 0.0002698 0.01643 0.27
## Residual 0.8049943 0.89721
## Number of obs: 12523, groups: country, 142
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.966e+00 3.864e-02 1.692e+02 102.616 < 2e-16 ***
## political_orientation 3.892e-02 7.120e-03 1.297e+01 5.466 0.000109 ***
## age -1.523e-03 1.174e-03 1.247e+04 -1.298 0.194326
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.402
## age -0.751 0.041
## Computing profile confidence intervals ...
## 0.15 % 99.85 %
## .sig01 0.053277639 0.188794386
## .sig02 -0.822662479 1.000000000
## .sig03 0.000000000 0.058453744
## .sigma 0.880571880 0.914311109
## (Intercept) 3.850144942 4.081574661
## political_orientation 0.013284208 0.061250527
## age -0.005005251 0.001963986
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation 0.0579 0.997 0.0264 0.0893
## 3 age -0.0116 0.997 -0.0381 0.0149
H3a(1) There is a positive linear link between right-wing political orientation and women’s importance ratings for partner’s age. Outcome: Importance ratings for partner’s age. Predictors: Political Orientation & Age. Random intercept and random slope for country.
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: imp_age ~ political_orientation + age + (1 + political_orientation |
## country)
## Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 46120.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0860 -0.5065 0.1705 0.6534 2.1961
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 0.085465 0.29234
## political_orientation 0.009757 0.09878 -0.77
## Residual 1.956241 1.39866
## Number of obs: 13109, groups: country, 143
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.716e+00 7.452e-02 5.222e+01 49.859 < 2e-16 ***
## political_orientation 7.908e-02 2.032e-02 1.539e+01 3.892 0.00138 **
## age -8.266e-03 1.796e-03 1.307e+04 -4.603 4.21e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.683
## age -0.597 0.024
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig01
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig01: falling back to linear interpolation
## 0.15 % 99.85 %
## .sig01 0.110868701 0.560820496
## .sig02 -0.961434270 0.617046419
## .sig03 0.007766235 0.203196740
## .sigma 1.373282066 1.424910245
## (Intercept) 3.486463009 3.959721045
## political_orientation 0.011026257 0.147576380
## age -0.013606154 -0.002940114
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation 0.0759 0.997 0.0180 0.134
## 3 age -0.0402 0.997 -0.0661 -0.0143
H3a(2) There is a positive linear link between right-wing political orientation and the relative age discrepancy between ideal partner’s age and women’s age. (discrepancy calculated as ideal partner’s age – women’s age) Outcome: Discrepancy between level ratings for ideal partner’s age and women’s age (ideal_age_rel) Predictors: Political Orientation & Age. Random intercept and random slope for country.
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## ideal_age_rel ~ political_orientation + age + (1 + political_orientation |
## country)
## Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 61595.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -11.4254 -0.4968 -0.1225 0.4167 25.7466
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 0.8110 0.9006
## political_orientation 0.4583 0.6770 -0.94
## Residual 9.5160 3.0848
## Number of obs: 12057, groups: country, 140
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.425e+00 1.762e-01 3.244e+01 19.443 <2e-16 ***
## political_orientation 1.469e-01 8.420e-02 3.640e+01 1.745 0.0894 .
## age -4.221e-02 4.158e-03 1.199e+04 -10.152 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.711
## age -0.576 0.006
## Computing profile confidence intervals ...
## 0.15 % 99.85 %
## .sig01 0.23944723 1.86330535
## .sig02 -0.99282843 0.01939224
## .sig03 0.39869760 1.01469699
## .sigma 3.02631366 3.14499654
## (Intercept) 2.82919847 3.98186213
## political_orientation -0.11315423 0.41406585
## age -0.05456051 -0.02987641
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation 0.0636 0.997 -0.0446 0.172
## 3 age -0.0921 0.997 -0.119 -0.0652
H3b(1) There is a positive linear link between right-wing political orientation and women’s importance ratings for partner’s height. Outcome: Importance ratings for partner’s height. Predictors: Political Orientation & Age. Random intercept and random slope for country.
model_imp_height_robustcheck <- lmer(imp_height ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control =lmerControl(optimizer = "bobyqa"))
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## imp_height ~ political_orientation + age + (1 + political_orientation |
## country)
## Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 46906
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2839 -0.5568 0.0992 0.7234 2.0290
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 8.664e-02 0.294348
## political_orientation 7.693e-05 0.008771 -1.00
## Residual 2.130e+00 1.459394
## Number of obs: 13022, groups: country, 143
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.913e+00 6.934e-02 1.647e+02 56.43 < 2e-16 ***
## political_orientation 1.171e-01 9.667e-03 6.703e+02 12.12 < 2e-16 ***
## age -5.444e-03 1.877e-03 1.302e+04 -2.90 0.00374 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.476
## age -0.674 0.057
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig01
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig01: falling back to linear interpolation
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig02: falling back to linear interpolation
## 0.15 % 99.85 %
## .sig01 0.18244127 0.3923682822
## .sig02 -1.00000000 1.0000000000
## .sig03 0.00000000 0.0741722096
## .sigma 1.43364813 1.4865977521
## (Intercept) 3.70585092 4.1346728259
## political_orientation 0.08195292 0.1514853491
## age -0.01102432 0.0001264944
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation 0.107 0.997 0.0808 0.133
## 3 age -0.0252 0.997 -0.0510 0.000597
H3b(2) There is a positive linear link between right-wing political orientation and ideal partner’s height. Outcome: Level ratings for ideal partner’s height. Predictors: Political Orientation & Age. Random intercept and random slope for country.
model_ideal_height_robustcheck <- lmer(ideal_height ~ political_orientation + age + (1+political_orientation|country), data = data_included_documented, control = lmerControl(optimizer = "bobyqa"))
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## ideal_height ~ political_orientation + age + (1 + political_orientation |
## country)
## Data: data_included_documented
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 14661.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -7.1159 -0.1374 -0.0759 0.0026 2.5926
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## country (Intercept) 1.685e-03 0.041047
## political_orientation 1.134e-05 0.003368 1.00
## Residual 1.877e-01 0.433192
## Number of obs: 12520, groups: country, 142
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 1.108e+00 1.783e-02 2.196e+02 62.172 < 2e-16 ***
## political_orientation 2.312e-03 2.945e-03 3.601e+02 0.785 0.433
## age -3.220e-03 5.715e-04 1.246e+04 -5.634 1.8e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pltcl_
## pltcl_rnttn -0.371
## age -0.788 0.044
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): unexpected decrease in
## profile: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig01
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig01: falling back to linear interpolation
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## .sig02: falling back to linear interpolation
## 0.15 % 99.85 %
## .sig01 0.015219409 0.085389183
## .sig02 -1.000000000 1.000000000
## .sig03 0.000000000 0.015443341
## .sigma 0.475998562 0.445652997
## (Intercept) 1.055198315 1.164038633
## political_orientation -0.008530965 0.011898733
## age -0.004914860 -0.001521768
## # A tibble: 3 × 5
## Parameter Std_Coefficient CI CI_low CI_high
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0 0.997 0 0
## 2 political_orientation 0.00720 0.997 -0.0200 0.0344
## 3 age -0.0506 0.997 -0.0772 -0.0239