Library

library(apaTables)
library(formr)
# library(effects)
# library(effectsize)
# library(lme4)
# library(sjstats)
# library(lmerTest)
library(ggplot2)
library(psych)
## 
## Attache Paket: 'psych'
## Die folgenden Objekte sind maskiert von 'package:ggplot2':
## 
##     %+%, alpha
library(knitr)
library(dplyr)
## 
## Attache Paket: 'dplyr'
## Die folgenden Objekte sind maskiert von 'package:formr':
## 
##     first, last
## Die folgenden Objekte sind maskiert von 'package:stats':
## 
##     filter, lag
## Die folgenden Objekte sind maskiert von 'package:base':
## 
##     intersect, setdiff, setequal, union
library(jtools)
library(raincloudplots)
library(countrycode)

apatheme = theme_bw() +
  theme(panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        panel.border = element_blank(),
        axis.line = element_line(),
        legend.title = element_blank(),
        plot.title = element_text(hjust = 0.5))

Data

Load selected data based on 03_codebook

data_included_documented = read.csv(file = "data_included_documented.csv")[,-1]

data_included_documented = data_included_documented %>%
  filter(!is.na(political_orientation))

data_included_documented = data_included_documented %>%
  select(sex, age, language, country,
         political_orientation,
         pref_politicalsim, pref_ethnicalsim, pref_religioussim,
         pref_level_financially_secure_successful_ambitious,
         pref_level_financially_secure, pref_level_successful_ambitious,
         pref_level_confident_assertive, 
         pref_level_confident, pref_level_assertive,
         pref_level_intelligence_educated,
         pref_level_intelligence, pref_level_educated,
         pref_level_kind_supportive,
         pref_level_kind, pref_level_supportive,
         pref_level_attractiveness,
         pref_level_attractive_body, pref_level_attractive_face,
         imp_age, ideal_age,
         imp_height, ideal_height,
         interest_single, interest_sexrel, interest_nonmonrel, interest_monrel
         )

Missingness Pattern

# crosstabs(~ is.na(data_included_documented$pref_level_kind) +
#             is.na(data_included_documented$pref_level_supportive))

Summary

describe(data_included_documented %>%
           select_if(is.numeric)) %>%
  kable()
vars n mean sd median trimmed mad min max range skew kurtosis se
age 1 13253 23.7202897 6.8965345 21.0 22.419975 4.4478 18.0 67 49.0 1.5479844 2.0877431 0.0599065
political_orientation 2 13257 2.5280229 1.3660201 3.0 2.531347 1.4826 0.0 6 6.0 0.0656681 0.0450769 0.0118641
pref_politicalsim 3 12949 3.2265040 1.9164802 3.0 3.283081 1.4826 0.0 6 6.0 -0.3496801 -0.9267668 0.0168417
pref_ethnicalsim 4 8643 3.2731690 1.4399195 3.0 3.305134 1.4826 0.0 6 6.0 -0.1432807 0.0624201 0.0154884
pref_religioussim 5 12937 2.9507614 2.1996731 3.0 2.938460 2.9652 0.0 6 6.0 -0.0393900 -1.3764222 0.0193393
pref_level_financially_secure_successful_ambitious 6 12551 4.3512469 0.8958860 4.5 4.373519 0.7413 0.0 6 6.0 -0.2566121 -0.0312702 0.0079968
pref_level_financially_secure 7 12700 4.2515748 1.1123663 4.0 4.267618 1.4826 0.0 6 6.0 -0.3160348 0.0383197 0.0098707
pref_level_successful_ambitious 8 12779 4.4361844 1.0750048 4.0 4.471589 1.4826 0.0 6 6.0 -0.3398636 -0.1077220 0.0095096
pref_level_confident_assertive 9 12697 4.3850516 0.8409224 4.5 4.398169 0.7413 1.0 6 5.0 -0.1581146 -0.1908187 0.0074629
pref_level_confident 10 12890 4.6868115 1.0241349 5.0 4.752521 1.4826 0.0 6 6.0 -0.3084903 -0.5199185 0.0090205
pref_level_assertive 11 12761 4.0814983 1.0425599 4.0 4.064355 1.4826 0.0 6 6.0 -0.1613944 0.1139068 0.0092291
pref_level_intelligence_educated 12 12723 4.7293091 0.8202860 5.0 4.757687 0.7413 0.5 6 5.5 -0.3358695 -0.1434036 0.0072723
pref_level_intelligence 13 12887 4.7858307 0.8929550 5.0 4.827078 1.4826 0.0 6 6.0 -0.3397771 -0.2641457 0.0078660
pref_level_educated 14 12784 4.6665363 1.0306818 5.0 4.736899 1.4826 0.0 6 6.0 -0.4708239 0.0313713 0.0091157
pref_level_kind_supportive 15 12729 5.1395632 0.6994721 5.0 5.201866 0.7413 2.0 6 4.0 -0.6345107 0.1082785 0.0061997
pref_level_kind 16 12919 5.2586888 0.8538259 5.0 5.370901 1.4826 0.0 6 6.0 -0.9896444 0.5289154 0.0075120
pref_level_supportive 17 12767 5.0206783 0.8933643 5.0 5.090945 1.4826 0.0 6 6.0 -0.6191681 0.0430046 0.0079065
pref_level_attractiveness 18 12526 4.0443078 0.9095593 4.0 4.049192 0.7413 0.0 6 6.0 -0.2176994 0.3431934 0.0081269
pref_level_attractive_body 19 12603 3.8400381 1.0168988 4.0 3.838937 1.4826 0.0 6 6.0 -0.0761180 0.3254029 0.0090582
pref_level_attractive_face 20 12728 4.2283941 1.0459340 4.0 4.227023 1.4826 0.0 6 6.0 -0.2899305 0.0912565 0.0092709
imp_age 21 13113 3.6313582 1.4196495 4.0 3.713945 1.4826 0.0 6 6.0 -0.5754470 0.2444746 0.0123974
ideal_age 22 12061 26.2319874 7.2850679 25.0 25.254431 7.4130 10.0 100 90.0 1.5176713 4.9783139 0.0663349
imp_height 23 13026 3.9486412 1.4911290 4.0 4.080695 1.4826 0.0 6 6.0 -0.7604326 0.3638011 0.0130650
ideal_height 24 12524 1.0282657 0.4357638 1.0 1.008283 0.0000 -2.0 2 4.0 -0.0964272 3.7226173 0.0038939
interest_single 25 13208 2.2229709 1.7639180 2.0 2.096139 1.4826 0.0 6 6.0 0.3091694 -0.8417319 0.0153483
interest_sexrel 26 13193 2.4040779 1.9823903 2.0 2.263288 2.9652 0.0 6 6.0 0.3040934 -1.0910713 0.0172591
interest_nonmonrel 27 13145 0.8615443 1.4981224 0.0 0.520871 0.0000 0.0 6 6.0 1.8220336 2.5365563 0.0130667
interest_monrel 28 13165 4.8196734 1.7517171 6.0 5.216273 0.0000 0.0 6 6.0 -1.6203776 1.6662237 0.0152670

Political Orientation

mean(data_included_documented$political_orientation) %>% round(., 2)
## [1] 2.53
sd(data_included_documented$political_orientation) %>% round(., 2)
## [1] 1.37
range(data_included_documented$political_orientation)
## [1] 0 6
hist <- ggplot(data_included_documented, aes(x = political_orientation)) + 
  geom_histogram(col = "grey", binwidth = 0.5, center = 0) +
  labs(x = "Political Orientation", y = "Number of Participants")+ 
  theme(text = element_text(size=15), axis.text.x = element_text(size = 10),
        axis.text.y = element_text(size = 10))+
 scale_x_continuous(breaks=c(0, 1, 2, 3, 4, 5, 6))+
  apatheme

hist

Save Image

jpeg("PO_Histogram.jpeg", width = 1580, height = 836, res = 300)
hist
dev.off()
## png 
##   2

Correlation between political orientation and age

cor.test(data_included_documented$political_orientation,
         data_included_documented$age,
         conf.level = 0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  data_included_documented$political_orientation and data_included_documented$age
## t = -6.0286, df = 13251, p-value = 1.698e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.06926286 -0.03530510
## sample estimates:
##        cor 
## -0.0522991

Correlations for Ideal Partner Preferences

cor.test(data_included_documented$pref_level_financially_secure,
         data_included_documented$pref_level_successful_ambitious,
         conf.level = 0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  data_included_documented$pref_level_financially_secure and data_included_documented$pref_level_successful_ambitious
## t = 42.601, df = 12549, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3400739 0.3706444
## sample estimates:
##       cor 
## 0.3554542
cor.test(data_included_documented$pref_level_confident,
         data_included_documented$pref_level_assertive,
         conf.level = 0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  data_included_documented$pref_level_confident and data_included_documented$pref_level_assertive
## t = 39.3, df = 12695, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3137402 0.3447564
## sample estimates:
##       cor 
## 0.3293371
cor.test(data_included_documented$pref_level_intelligence,
         data_included_documented$pref_level_educated,
         conf.level = 0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  data_included_documented$pref_level_intelligence and data_included_documented$pref_level_educated
## t = 58.552, df = 12721, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.446951 0.474328
## sample estimates:
##       cor 
## 0.4607491
cor.test(data_included_documented$pref_level_kind,
         data_included_documented$pref_level_supportive,
         conf.level = 0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  data_included_documented$pref_level_kind and data_included_documented$pref_level_supportive
## t = 33.231, df = 12727, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2664929 0.2984644
## sample estimates:
##       cor 
## 0.2825571
cor.test(data_included_documented$pref_level_attractive_body,
         data_included_documented$pref_level_attractive_face,
         conf.level = 0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  data_included_documented$pref_level_attractive_body and data_included_documented$pref_level_attractive_face
## t = 79.881, df = 12524, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.5692519 0.5924574
## sample estimates:
##       cor 
## 0.5809727

Language

n_part = nrow(data_included_documented)

table(data_included_documented$language)
## 
##    chinese     danish    english     french     german    italian   japanese 
##         96        385       2849       2385       2187        999        287 
## portuguese    russian    spanish 
##        825        207       3037
round((table(data_included_documented$language)/n_part)*100,2)
## 
##    chinese     danish    english     french     german    italian   japanese 
##       0.72       2.90      21.49      17.99      16.50       7.54       2.16 
## portuguese    russian    spanish 
##       6.22       1.56      22.91

Country

country_absolute = as.data.frame(table(data_included_documented$country))

country_freq = as.data.frame(round((table(data_included_documented$country)/n_part)*100,2))

country = left_join(country_absolute, country_freq, by = "Var1")
country = country %>% rename(Country = Var1,
                   n = Freq.x,
                   percentage = Freq.y)
kable(country)
Country n percentage
Afghanistan 1 0.01
Albania 2 0.02
Algeria 7 0.05
Andorra 6 0.05
Antigua and Barbuda 2 0.02
Argentina 217 1.64
Armenia 2 0.02
Aruba 1 0.01
Australia 133 1.00
Austria 197 1.49
Bahamas, The 1 0.01
Bahrain 3 0.02
Barbados 1 0.01
Belarus 13 0.10
Belgium 102 0.77
Belize 1 0.01
Benin 2 0.02
Bolivia 23 0.17
Bosnia and Herzegovina 6 0.05
Botswana 1 0.01
Brazil 806 6.08
Bulgaria 9 0.07
Burma 1 0.01
Cameroon 3 0.02
Canada 338 2.55
Central African Republic 2 0.02
Chile 154 1.16
China 90 0.68
Colombia 387 2.92
Costa Rica 47 0.35
Cote d’Ivoire 1 0.01
Croatia 6 0.05
Cuba 1 0.01
Czechia 11 0.08
Denmark 395 2.98
Dominica 2 0.02
Dominican Republic 41 0.31
East Timor (see Timor-Leste) 1 0.01
Ecuador 102 0.77
Egypt 3 0.02
El Salvador 26 0.20
Estonia 12 0.09
Ethiopia 1 0.01
Fiji 1 0.01
Finland 31 0.23
France 2013 15.18
Georgia 3 0.02
Germany 1846 13.92
Ghana 3 0.02
Greece 4 0.03
Grenada 1 0.01
Guatemala 61 0.46
Guinea-Bissau 1 0.01
Guyana 3 0.02
Haiti 4 0.03
Honduras 18 0.14
Hong Kong 8 0.06
Hungary 9 0.07
Iceland 5 0.04
India 45 0.34
Indonesia 18 0.14
Iran 7 0.05
Iraq 1 0.01
Ireland 59 0.45
Israel 13 0.10
Italy 968 7.30
Jamaica 6 0.05
Japan 290 2.19
Jordan 2 0.02
Kazakhstan 9 0.07
Kenya 6 0.05
Kuwait 1 0.01
Kyrgyzstan 2 0.02
Latvia 8 0.06
Lebanon 3 0.02
Liechtenstein 1 0.01
Lithuania 3 0.02
Luxembourg 13 0.10
Macedonia 1 0.01
Madagascar 1 0.01
Malaysia 17 0.13
Maldives 1 0.01
Mali 2 0.02
Malta 2 0.02
Marshall Islands 1 0.01
Mauritania 1 0.01
Mauritius 2 0.02
Mexico 1157 8.73
Micronesia 1 0.01
Monaco 1 0.01
Montenegro 1 0.01
Morocco 16 0.12
Namibia 4 0.03
Nepal 1 0.01
Netherlands 44 0.33
New Zealand 34 0.26
Nicaragua 15 0.11
Nigeria 6 0.05
Norway 12 0.09
Pakistan 8 0.06
Palestinian Territories 2 0.02
Panama 15 0.11
Paraguay 11 0.08
Peru 119 0.90
Philippines 36 0.27
Poland 7 0.05
Portugal 51 0.38
Qatar 2 0.02
Romania 24 0.18
Russia 155 1.17
Saint Lucia 2 0.02
Saint Vincent and the Grenadines 1 0.01
Saudi Arabia 6 0.05
Senegal 5 0.04
Serbia 5 0.04
Singapore 26 0.20
Sint Maarten 1 0.01
Slovakia 3 0.02
Slovenia 3 0.02
South Africa 29 0.22
South Korea 5 0.04
South Sudan 1 0.01
Spain 562 4.24
Sri Lanka 3 0.02
Swaziland 1 0.01
Sweden 27 0.20
Switzerland 280 2.11
Syria 1 0.01
Taiwan 7 0.05
Tanzania 1 0.01
Thailand 4 0.03
Trinidad and Tobago 8 0.06
Tunisia 7 0.05
Turkey 8 0.06
Turkmenistan 2 0.02
Uganda 1 0.01
Ukraine 21 0.16
United Arab Emirates 14 0.11
United Kingdom 499 3.76
United States of America 1254 9.46
Uruguay 24 0.18
Venezuela 67 0.51
Vietnam 2 0.02
Zimbabwe 1 0.01
write.table(country, file = "country.txt", sep = ",")

kable(country %>% arrange(-n))
Country n percentage
France 2013 15.18
Germany 1846 13.92
United States of America 1254 9.46
Mexico 1157 8.73
Italy 968 7.30
Brazil 806 6.08
Spain 562 4.24
United Kingdom 499 3.76
Denmark 395 2.98
Colombia 387 2.92
Canada 338 2.55
Japan 290 2.19
Switzerland 280 2.11
Argentina 217 1.64
Austria 197 1.49
Russia 155 1.17
Chile 154 1.16
Australia 133 1.00
Peru 119 0.90
Belgium 102 0.77
Ecuador 102 0.77
China 90 0.68
Venezuela 67 0.51
Guatemala 61 0.46
Ireland 59 0.45
Portugal 51 0.38
Costa Rica 47 0.35
India 45 0.34
Netherlands 44 0.33
Dominican Republic 41 0.31
Philippines 36 0.27
New Zealand 34 0.26
Finland 31 0.23
South Africa 29 0.22
Sweden 27 0.20
El Salvador 26 0.20
Singapore 26 0.20
Romania 24 0.18
Uruguay 24 0.18
Bolivia 23 0.17
Ukraine 21 0.16
Honduras 18 0.14
Indonesia 18 0.14
Malaysia 17 0.13
Morocco 16 0.12
Nicaragua 15 0.11
Panama 15 0.11
United Arab Emirates 14 0.11
Belarus 13 0.10
Israel 13 0.10
Luxembourg 13 0.10
Estonia 12 0.09
Norway 12 0.09
Czechia 11 0.08
Paraguay 11 0.08
Bulgaria 9 0.07
Hungary 9 0.07
Kazakhstan 9 0.07
Hong Kong 8 0.06
Latvia 8 0.06
Pakistan 8 0.06
Trinidad and Tobago 8 0.06
Turkey 8 0.06
Algeria 7 0.05
Iran 7 0.05
Poland 7 0.05
Taiwan 7 0.05
Tunisia 7 0.05
Andorra 6 0.05
Bosnia and Herzegovina 6 0.05
Croatia 6 0.05
Jamaica 6 0.05
Kenya 6 0.05
Nigeria 6 0.05
Saudi Arabia 6 0.05
Iceland 5 0.04
Senegal 5 0.04
Serbia 5 0.04
South Korea 5 0.04
Greece 4 0.03
Haiti 4 0.03
Namibia 4 0.03
Thailand 4 0.03
Bahrain 3 0.02
Cameroon 3 0.02
Egypt 3 0.02
Georgia 3 0.02
Ghana 3 0.02
Guyana 3 0.02
Lebanon 3 0.02
Lithuania 3 0.02
Slovakia 3 0.02
Slovenia 3 0.02
Sri Lanka 3 0.02
Albania 2 0.02
Antigua and Barbuda 2 0.02
Armenia 2 0.02
Benin 2 0.02
Central African Republic 2 0.02
Dominica 2 0.02
Jordan 2 0.02
Kyrgyzstan 2 0.02
Mali 2 0.02
Malta 2 0.02
Mauritius 2 0.02
Palestinian Territories 2 0.02
Qatar 2 0.02
Saint Lucia 2 0.02
Turkmenistan 2 0.02
Vietnam 2 0.02
Afghanistan 1 0.01
Aruba 1 0.01
Bahamas, The 1 0.01
Barbados 1 0.01
Belize 1 0.01
Botswana 1 0.01
Burma 1 0.01
Cote d’Ivoire 1 0.01
Cuba 1 0.01
East Timor (see Timor-Leste) 1 0.01
Ethiopia 1 0.01
Fiji 1 0.01
Grenada 1 0.01
Guinea-Bissau 1 0.01
Iraq 1 0.01
Kuwait 1 0.01
Liechtenstein 1 0.01
Macedonia 1 0.01
Madagascar 1 0.01
Maldives 1 0.01
Marshall Islands 1 0.01
Mauritania 1 0.01
Micronesia 1 0.01
Monaco 1 0.01
Montenegro 1 0.01
Nepal 1 0.01
Saint Vincent and the Grenadines 1 0.01
Sint Maarten 1 0.01
South Sudan 1 0.01
Swaziland 1 0.01
Syria 1 0.01
Tanzania 1 0.01
Uganda 1 0.01
Zimbabwe 1 0.01
country = country %>% 
  mutate(continent = countrycode(Country,
                                 origin = "country.name",
                                 destination = "continent"),
         continent = ifelse(Country == "Micronesia",
                            "Oceania",
                            continent))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `continent = countrycode(Country, origin = "country.name",
##   destination = "continent")`.
## Caused by warning:
## ! Some values were not matched unambiguously: Micronesia
continents <- country %>%
  group_by(continent) %>%
  summarize(n = sum(n)) %>%
  mutate(freq = round((n/n_part)*100, 2)) %>%
  arrange(-n)

Descriptives and Correlation Table

cor = data_included_documented %>%
  select(political_orientation,
         age,
         pref_politicalsim, 
         pref_ethnicalsim, 
         pref_religioussim,
         pref_level_financially_secure_successful_ambitious,
         pref_level_confident_assertive,
         pref_level_intelligence_educated, 
         pref_level_kind_supportive, 
         pref_level_attractiveness, 
         imp_age, 
         ideal_age, 
         imp_height, 
         ideal_height,
         interest_single,
         interest_sexrel, 
         interest_nonmonrel, 
         interest_monrel, 
         ) 
kable(round(cor(cor, use="pairwise.complete.obs"),2))
political_orientation age pref_politicalsim pref_ethnicalsim pref_religioussim pref_level_financially_secure_successful_ambitious pref_level_confident_assertive pref_level_intelligence_educated pref_level_kind_supportive pref_level_attractiveness imp_age ideal_age imp_height ideal_height interest_single interest_sexrel interest_nonmonrel interest_monrel
political_orientation 1.00 -0.05 -0.12 0.15 0.12 0.16 0.12 0.06 0.03 0.05 0.10 -0.05 0.13 0.01 -0.04 0.06 -0.05 -0.02
age -0.05 1.00 0.11 0.03 0.11 0.07 0.10 0.07 0.04 -0.02 -0.05 0.90 -0.04 -0.05 -0.03 -0.11 0.01 0.07
pref_politicalsim -0.12 0.11 1.00 0.14 0.43 0.06 -0.02 0.13 0.06 0.12 0.11 0.11 0.05 -0.01 0.01 -0.03 -0.02 0.11
pref_ethnicalsim 0.15 0.03 0.14 1.00 0.24 0.15 0.03 0.06 0.06 0.16 0.15 0.03 0.11 0.00 -0.06 0.03 -0.04 -0.01
pref_religioussim 0.12 0.11 0.43 0.24 1.00 0.16 0.09 0.11 0.10 0.08 0.19 0.11 0.13 0.01 -0.03 0.10 -0.08 0.07
pref_level_financially_secure_successful_ambitious 0.16 0.07 0.06 0.15 0.16 1.00 0.36 0.43 0.24 0.27 0.18 0.10 0.25 0.10 0.00 0.04 -0.02 0.03
pref_level_confident_assertive 0.12 0.10 -0.02 0.03 0.09 0.36 1.00 0.32 0.24 0.13 0.12 0.12 0.20 0.05 0.04 0.06 0.03 -0.04
pref_level_intelligence_educated 0.06 0.07 0.13 0.06 0.11 0.43 0.32 1.00 0.20 0.22 0.16 0.09 0.22 0.07 0.04 0.03 0.00 0.01
pref_level_kind_supportive 0.03 0.04 0.06 0.06 0.10 0.24 0.24 0.20 1.00 0.13 0.10 0.04 0.07 0.01 -0.06 0.05 -0.05 0.01
pref_level_attractiveness 0.05 -0.02 0.12 0.16 0.08 0.27 0.13 0.22 0.13 1.00 0.16 -0.03 0.27 0.09 -0.04 -0.04 0.02 0.01
imp_age 0.10 -0.05 0.11 0.15 0.19 0.18 0.12 0.16 0.10 0.16 1.00 -0.04 0.35 0.03 0.01 0.04 -0.05 0.03
ideal_age -0.05 0.90 0.11 0.03 0.11 0.10 0.12 0.09 0.04 -0.03 -0.04 1.00 -0.01 -0.03 -0.02 -0.10 0.02 0.06
imp_height 0.13 -0.04 0.05 0.11 0.13 0.25 0.20 0.22 0.07 0.27 0.35 -0.01 1.00 0.29 0.02 0.02 -0.01 0.02
ideal_height 0.01 -0.05 -0.01 0.00 0.01 0.10 0.05 0.07 0.01 0.09 0.03 -0.03 0.29 1.00 0.00 -0.02 -0.01 0.03
interest_single -0.04 -0.03 0.01 -0.06 -0.03 0.00 0.04 0.04 -0.06 -0.04 0.01 -0.02 0.02 0.00 1.00 0.18 0.18 -0.08
interest_sexrel 0.06 -0.11 -0.03 0.03 0.10 0.04 0.06 0.03 0.05 -0.04 0.04 -0.10 0.02 -0.02 0.18 1.00 0.12 0.01
interest_nonmonrel -0.05 0.01 -0.02 -0.04 -0.08 -0.02 0.03 0.00 -0.05 0.02 -0.05 0.02 -0.01 -0.01 0.18 0.12 1.00 -0.23
interest_monrel -0.02 0.07 0.11 -0.01 0.07 0.03 -0.04 0.01 0.01 0.01 0.03 0.06 0.02 0.03 -0.08 0.01 -0.23 1.00
apa_table_cor = apa.cor.table(cor, filename = "descriptives.doc")
LS0tDQp0aXRsZTogPGZvbnQgY29sb3I9IiM2NkMyQTUiPkRlc2NyaXB0aXZlczwvZm9udD4NCmNzbDogYXBhLWN1c3RvbS1uby1pc3N1ZS5jc2wNCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgY29kZV9mb2xkaW5nOiAic2hvdyINCmVkaXRvcl9vcHRpb25zOiANCiAgY2h1bmtfb3V0cHV0X3R5cGU6IGNvbnNvbGUNCi0tLQ0KDQojIyB7LnRhYnNldH0NCg0KDQojIyMgTGlicmFyeQ0KYGBge3IgTGlicmFyeX0NCmxpYnJhcnkoYXBhVGFibGVzKQ0KbGlicmFyeShmb3JtcikNCiMgbGlicmFyeShlZmZlY3RzKQ0KIyBsaWJyYXJ5KGVmZmVjdHNpemUpDQojIGxpYnJhcnkobG1lNCkNCiMgbGlicmFyeShzanN0YXRzKQ0KIyBsaWJyYXJ5KGxtZXJUZXN0KQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShwc3ljaCkNCmxpYnJhcnkoa25pdHIpDQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeShqdG9vbHMpDQpsaWJyYXJ5KHJhaW5jbG91ZHBsb3RzKQ0KbGlicmFyeShjb3VudHJ5Y29kZSkNCg0KYXBhdGhlbWUgPSB0aGVtZV9idygpICsNCiAgdGhlbWUocGFuZWwuZ3JpZC5tYWpvciA9IGVsZW1lbnRfYmxhbmsoKSwNCiAgICAgICAgcGFuZWwuZ3JpZC5taW5vciA9IGVsZW1lbnRfYmxhbmsoKSwNCiAgICAgICAgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLA0KICAgICAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoKSwNCiAgICAgICAgbGVnZW5kLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLA0KICAgICAgICBwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41KSkNCg0KYGBgDQoNCiMjIyBEYXRhDQpMb2FkIHNlbGVjdGVkIGRhdGEgYmFzZWQgb24gMDNfY29kZWJvb2sNCmBgYHtyfQ0KZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkID0gcmVhZC5jc3YoZmlsZSA9ICJkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQuY3N2IilbLC0xXQ0KDQpkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQgPSBkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQgJT4lDQogIGZpbHRlcighaXMubmEocG9saXRpY2FsX29yaWVudGF0aW9uKSkNCg0KZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkID0gZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkICU+JQ0KICBzZWxlY3Qoc2V4LCBhZ2UsIGxhbmd1YWdlLCBjb3VudHJ5LA0KICAgICAgICAgcG9saXRpY2FsX29yaWVudGF0aW9uLA0KICAgICAgICAgcHJlZl9wb2xpdGljYWxzaW0sIHByZWZfZXRobmljYWxzaW0sIHByZWZfcmVsaWdpb3Vzc2ltLA0KICAgICAgICAgcHJlZl9sZXZlbF9maW5hbmNpYWxseV9zZWN1cmVfc3VjY2Vzc2Z1bF9hbWJpdGlvdXMsDQogICAgICAgICBwcmVmX2xldmVsX2ZpbmFuY2lhbGx5X3NlY3VyZSwgcHJlZl9sZXZlbF9zdWNjZXNzZnVsX2FtYml0aW91cywNCiAgICAgICAgIHByZWZfbGV2ZWxfY29uZmlkZW50X2Fzc2VydGl2ZSwgDQogICAgICAgICBwcmVmX2xldmVsX2NvbmZpZGVudCwgcHJlZl9sZXZlbF9hc3NlcnRpdmUsDQogICAgICAgICBwcmVmX2xldmVsX2ludGVsbGlnZW5jZV9lZHVjYXRlZCwNCiAgICAgICAgIHByZWZfbGV2ZWxfaW50ZWxsaWdlbmNlLCBwcmVmX2xldmVsX2VkdWNhdGVkLA0KICAgICAgICAgcHJlZl9sZXZlbF9raW5kX3N1cHBvcnRpdmUsDQogICAgICAgICBwcmVmX2xldmVsX2tpbmQsIHByZWZfbGV2ZWxfc3VwcG9ydGl2ZSwNCiAgICAgICAgIHByZWZfbGV2ZWxfYXR0cmFjdGl2ZW5lc3MsDQogICAgICAgICBwcmVmX2xldmVsX2F0dHJhY3RpdmVfYm9keSwgcHJlZl9sZXZlbF9hdHRyYWN0aXZlX2ZhY2UsDQogICAgICAgICBpbXBfYWdlLCBpZGVhbF9hZ2UsDQogICAgICAgICBpbXBfaGVpZ2h0LCBpZGVhbF9oZWlnaHQsDQogICAgICAgICBpbnRlcmVzdF9zaW5nbGUsIGludGVyZXN0X3NleHJlbCwgaW50ZXJlc3Rfbm9ubW9ucmVsLCBpbnRlcmVzdF9tb25yZWwNCiAgICAgICAgICkNCmBgYA0KDQojIyMgTWlzc2luZ25lc3MgUGF0dGVybiB7LnRhYnNldH0NCmBgYHtyfQ0KIyBjcm9zc3RhYnMofiBpcy5uYShkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQkcHJlZl9sZXZlbF9raW5kKSArDQojICAgICAgICAgICAgIGlzLm5hKGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCRwcmVmX2xldmVsX3N1cHBvcnRpdmUpKQ0KYGBgDQoNCiMjIyBTdW1tYXJ5IHsudGFic2V0IC5hY3RpdmV9DQpgYGB7ciBTdW1tYXJ5fQ0KZGVzY3JpYmUoZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkICU+JQ0KICAgICAgICAgICBzZWxlY3RfaWYoaXMubnVtZXJpYykpICU+JQ0KICBrYWJsZSgpDQpgYGANCg0KIyMjIFBvbGl0aWNhbCBPcmllbnRhdGlvbiB7LnRhYnNldH0NCmBgYHtyIFBvbGl0aWNhbCBPcmllbnRhdGlvbn0NCm1lYW4oZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkJHBvbGl0aWNhbF9vcmllbnRhdGlvbikgJT4lIHJvdW5kKC4sIDIpDQpzZChkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQkcG9saXRpY2FsX29yaWVudGF0aW9uKSAlPiUgcm91bmQoLiwgMikNCnJhbmdlKGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCRwb2xpdGljYWxfb3JpZW50YXRpb24pDQoNCmhpc3QgPC0gZ2dwbG90KGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCwgYWVzKHggPSBwb2xpdGljYWxfb3JpZW50YXRpb24pKSArIA0KICBnZW9tX2hpc3RvZ3JhbShjb2wgPSAiZ3JleSIsIGJpbndpZHRoID0gMC41LCBjZW50ZXIgPSAwKSArDQogIGxhYnMoeCA9ICJQb2xpdGljYWwgT3JpZW50YXRpb24iLCB5ID0gIk51bWJlciBvZiBQYXJ0aWNpcGFudHMiKSsgDQogIHRoZW1lKHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZT0xNSksIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMCksDQogICAgICAgIGF4aXMudGV4dC55ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMCkpKw0KIHNjYWxlX3hfY29udGludW91cyhicmVha3M9YygwLCAxLCAyLCAzLCA0LCA1LCA2KSkrDQogIGFwYXRoZW1lDQoNCmhpc3QNCmBgYA0KDQoNCiMjIyMgU2F2ZSBJbWFnZQ0KYGBge3J9DQpqcGVnKCJQT19IaXN0b2dyYW0uanBlZyIsIHdpZHRoID0gMTU4MCwgaGVpZ2h0ID0gODM2LCByZXMgPSAzMDApDQpoaXN0DQpkZXYub2ZmKCkNCmBgYA0KDQojIyMjIENvcnJlbGF0aW9uIGJldHdlZW4gcG9saXRpY2FsIG9yaWVudGF0aW9uIGFuZCBhZ2UNCmBgYHtyfQ0KY29yLnRlc3QoZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkJHBvbGl0aWNhbF9vcmllbnRhdGlvbiwNCiAgICAgICAgIGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCRhZ2UsDQogICAgICAgICBjb25mLmxldmVsID0gMC45NSkNCmBgYA0KDQojIyMgQ29ycmVsYXRpb25zIGZvciBJZGVhbCBQYXJ0bmVyIFByZWZlcmVuY2VzIHsudGFic2V0fQ0KYGBge3IgQ29ycmVsYXRpb25zIGZvciBpZGVhbCBwYXJ0bmVyIHByZWZlcmVuY2VzfQ0KY29yLnRlc3QoZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkJHByZWZfbGV2ZWxfZmluYW5jaWFsbHlfc2VjdXJlLA0KICAgICAgICAgZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkJHByZWZfbGV2ZWxfc3VjY2Vzc2Z1bF9hbWJpdGlvdXMsDQogICAgICAgICBjb25mLmxldmVsID0gMC45NSkNCg0KY29yLnRlc3QoZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkJHByZWZfbGV2ZWxfY29uZmlkZW50LA0KICAgICAgICAgZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkJHByZWZfbGV2ZWxfYXNzZXJ0aXZlLA0KICAgICAgICAgY29uZi5sZXZlbCA9IDAuOTUpDQoNCmNvci50ZXN0KGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCRwcmVmX2xldmVsX2ludGVsbGlnZW5jZSwNCiAgICAgICAgIGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCRwcmVmX2xldmVsX2VkdWNhdGVkLA0KICAgICAgICAgY29uZi5sZXZlbCA9IDAuOTUpDQoNCmNvci50ZXN0KGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCRwcmVmX2xldmVsX2tpbmQsDQogICAgICAgICBkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQkcHJlZl9sZXZlbF9zdXBwb3J0aXZlLA0KICAgICAgICAgY29uZi5sZXZlbCA9IDAuOTUpDQoNCmNvci50ZXN0KGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCRwcmVmX2xldmVsX2F0dHJhY3RpdmVfYm9keSwNCiAgICAgICAgIGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCRwcmVmX2xldmVsX2F0dHJhY3RpdmVfZmFjZSwNCiAgICAgICAgIGNvbmYubGV2ZWwgPSAwLjk1KQ0KYGBgDQoNCiMjIyBMYW5ndWFnZSB7LnRhYnNldH0NCmBgYHtyfQ0Kbl9wYXJ0ID0gbnJvdyhkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQpDQoNCnRhYmxlKGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCRsYW5ndWFnZSkNCg0Kcm91bmQoKHRhYmxlKGRhdGFfaW5jbHVkZWRfZG9jdW1lbnRlZCRsYW5ndWFnZSkvbl9wYXJ0KSoxMDAsMikNCmBgYA0KDQojIyMgQ291bnRyeSB7LnRhYnNldH0NCmBgYHtyfQ0KY291bnRyeV9hYnNvbHV0ZSA9IGFzLmRhdGEuZnJhbWUodGFibGUoZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkJGNvdW50cnkpKQ0KDQpjb3VudHJ5X2ZyZXEgPSBhcy5kYXRhLmZyYW1lKHJvdW5kKCh0YWJsZShkYXRhX2luY2x1ZGVkX2RvY3VtZW50ZWQkY291bnRyeSkvbl9wYXJ0KSoxMDAsMikpDQoNCmNvdW50cnkgPSBsZWZ0X2pvaW4oY291bnRyeV9hYnNvbHV0ZSwgY291bnRyeV9mcmVxLCBieSA9ICJWYXIxIikNCmNvdW50cnkgPSBjb3VudHJ5ICU+JSByZW5hbWUoQ291bnRyeSA9IFZhcjEsDQogICAgICAgICAgICAgICAgICAgbiA9IEZyZXEueCwNCiAgICAgICAgICAgICAgICAgICBwZXJjZW50YWdlID0gRnJlcS55KQ0Ka2FibGUoY291bnRyeSkNCg0Kd3JpdGUudGFibGUoY291bnRyeSwgZmlsZSA9ICJjb3VudHJ5LnR4dCIsIHNlcCA9ICIsIikNCg0Ka2FibGUoY291bnRyeSAlPiUgYXJyYW5nZSgtbikpDQpgYGANCg0KYGBge3J9DQpjb3VudHJ5ID0gY291bnRyeSAlPiUgDQogIG11dGF0ZShjb250aW5lbnQgPSBjb3VudHJ5Y29kZShDb3VudHJ5LA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb3JpZ2luID0gImNvdW50cnkubmFtZSIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkZXN0aW5hdGlvbiA9ICJjb250aW5lbnQiKSwNCiAgICAgICAgIGNvbnRpbmVudCA9IGlmZWxzZShDb3VudHJ5ID09ICJNaWNyb25lc2lhIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAiT2NlYW5pYSIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgY29udGluZW50KSkNCg0KY29udGluZW50cyA8LSBjb3VudHJ5ICU+JQ0KICBncm91cF9ieShjb250aW5lbnQpICU+JQ0KICBzdW1tYXJpemUobiA9IHN1bShuKSkgJT4lDQogIG11dGF0ZShmcmVxID0gcm91bmQoKG4vbl9wYXJ0KSoxMDAsIDIpKSAlPiUNCiAgYXJyYW5nZSgtbikNCmBgYA0KDQojIyMgRGVzY3JpcHRpdmVzIGFuZCBDb3JyZWxhdGlvbiBUYWJsZSB7LnRhYnNldH0NCmBgYHtyfQ0KY29yID0gZGF0YV9pbmNsdWRlZF9kb2N1bWVudGVkICU+JQ0KICBzZWxlY3QocG9saXRpY2FsX29yaWVudGF0aW9uLA0KICAgICAgICAgYWdlLA0KICAgICAgICAgcHJlZl9wb2xpdGljYWxzaW0sIA0KICAgICAgICAgcHJlZl9ldGhuaWNhbHNpbSwgDQogICAgICAgICBwcmVmX3JlbGlnaW91c3NpbSwNCiAgICAgICAgIHByZWZfbGV2ZWxfZmluYW5jaWFsbHlfc2VjdXJlX3N1Y2Nlc3NmdWxfYW1iaXRpb3VzLA0KICAgICAgICAgcHJlZl9sZXZlbF9jb25maWRlbnRfYXNzZXJ0aXZlLA0KICAgICAgICAgcHJlZl9sZXZlbF9pbnRlbGxpZ2VuY2VfZWR1Y2F0ZWQsIA0KICAgICAgICAgcHJlZl9sZXZlbF9raW5kX3N1cHBvcnRpdmUsIA0KICAgICAgICAgcHJlZl9sZXZlbF9hdHRyYWN0aXZlbmVzcywgDQogICAgICAgICBpbXBfYWdlLCANCiAgICAgICAgIGlkZWFsX2FnZSwgDQogICAgICAgICBpbXBfaGVpZ2h0LCANCiAgICAgICAgIGlkZWFsX2hlaWdodCwNCiAgICAgICAgIGludGVyZXN0X3NpbmdsZSwNCiAgICAgICAgIGludGVyZXN0X3NleHJlbCwgDQogICAgICAgICBpbnRlcmVzdF9ub25tb25yZWwsIA0KICAgICAgICAgaW50ZXJlc3RfbW9ucmVsLCANCiAgICAgICAgICkgDQprYWJsZShyb3VuZChjb3IoY29yLCB1c2U9InBhaXJ3aXNlLmNvbXBsZXRlLm9icyIpLDIpKQ0KYXBhX3RhYmxlX2NvciA9IGFwYS5jb3IudGFibGUoY29yLCBmaWxlbmFtZSA9ICJkZXNjcmlwdGl2ZXMuZG9jIikNCmBgYA0KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA==