Library
library(apaTables)
library(formr)
# library(effects)
# library(effectsize)
# library(lme4)
# library(sjstats)
# library(lmerTest)
library(ggplot2)
library(psych)
##
## Attache Paket: 'psych'
## Die folgenden Objekte sind maskiert von 'package:ggplot2':
##
## %+%, alpha
library(knitr)
library(dplyr)
##
## Attache Paket: 'dplyr'
## Die folgenden Objekte sind maskiert von 'package:formr':
##
## first, last
## Die folgenden Objekte sind maskiert von 'package:stats':
##
## filter, lag
## Die folgenden Objekte sind maskiert von 'package:base':
##
## intersect, setdiff, setequal, union
library(jtools)
library(raincloudplots)
library(countrycode)
apatheme = theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
axis.line = element_line(),
legend.title = element_blank(),
plot.title = element_text(hjust = 0.5))
Data
Load selected data based on 03_codebook
data_included_documented = read.csv(file = "data_included_documented.csv")[,-1]
data_included_documented = data_included_documented %>%
filter(!is.na(political_orientation))
data_included_documented = data_included_documented %>%
select(sex, age, language, country,
political_orientation,
pref_politicalsim, pref_ethnicalsim, pref_religioussim,
pref_level_financially_secure_successful_ambitious,
pref_level_financially_secure, pref_level_successful_ambitious,
pref_level_confident_assertive,
pref_level_confident, pref_level_assertive,
pref_level_intelligence_educated,
pref_level_intelligence, pref_level_educated,
pref_level_kind_supportive,
pref_level_kind, pref_level_supportive,
pref_level_attractiveness,
pref_level_attractive_body, pref_level_attractive_face,
imp_age, ideal_age,
imp_height, ideal_height,
interest_single, interest_sexrel, interest_nonmonrel, interest_monrel
)
Political Orientation
mean(data_included_documented$political_orientation) %>% round(., 2)
## [1] 2.53
sd(data_included_documented$political_orientation) %>% round(., 2)
## [1] 1.37
range(data_included_documented$political_orientation)
## [1] 0 6
hist <- ggplot(data_included_documented, aes(x = political_orientation)) +
geom_histogram(col = "grey", binwidth = 0.5, center = 0) +
labs(x = "Political Orientation", y = "Number of Participants")+
theme(text = element_text(size=15), axis.text.x = element_text(size = 10),
axis.text.y = element_text(size = 10))+
scale_x_continuous(breaks=c(0, 1, 2, 3, 4, 5, 6))+
apatheme
hist

Save Image
jpeg("PO_Histogram.jpeg", width = 1580, height = 836, res = 300)
hist
dev.off()
## png
## 2
Correlation between political orientation and age
cor.test(data_included_documented$political_orientation,
data_included_documented$age,
conf.level = 0.95)
##
## Pearson's product-moment correlation
##
## data: data_included_documented$political_orientation and data_included_documented$age
## t = -6.0286, df = 13251, p-value = 1.698e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.06926286 -0.03530510
## sample estimates:
## cor
## -0.0522991
Correlations for Ideal Partner Preferences
cor.test(data_included_documented$pref_level_financially_secure,
data_included_documented$pref_level_successful_ambitious,
conf.level = 0.95)
##
## Pearson's product-moment correlation
##
## data: data_included_documented$pref_level_financially_secure and data_included_documented$pref_level_successful_ambitious
## t = 42.601, df = 12549, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3400739 0.3706444
## sample estimates:
## cor
## 0.3554542
cor.test(data_included_documented$pref_level_confident,
data_included_documented$pref_level_assertive,
conf.level = 0.95)
##
## Pearson's product-moment correlation
##
## data: data_included_documented$pref_level_confident and data_included_documented$pref_level_assertive
## t = 39.3, df = 12695, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3137402 0.3447564
## sample estimates:
## cor
## 0.3293371
cor.test(data_included_documented$pref_level_intelligence,
data_included_documented$pref_level_educated,
conf.level = 0.95)
##
## Pearson's product-moment correlation
##
## data: data_included_documented$pref_level_intelligence and data_included_documented$pref_level_educated
## t = 58.552, df = 12721, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.446951 0.474328
## sample estimates:
## cor
## 0.4607491
cor.test(data_included_documented$pref_level_kind,
data_included_documented$pref_level_supportive,
conf.level = 0.95)
##
## Pearson's product-moment correlation
##
## data: data_included_documented$pref_level_kind and data_included_documented$pref_level_supportive
## t = 33.231, df = 12727, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2664929 0.2984644
## sample estimates:
## cor
## 0.2825571
cor.test(data_included_documented$pref_level_attractive_body,
data_included_documented$pref_level_attractive_face,
conf.level = 0.95)
##
## Pearson's product-moment correlation
##
## data: data_included_documented$pref_level_attractive_body and data_included_documented$pref_level_attractive_face
## t = 79.881, df = 12524, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5692519 0.5924574
## sample estimates:
## cor
## 0.5809727
Language
n_part = nrow(data_included_documented)
table(data_included_documented$language)
##
## chinese danish english french german italian japanese
## 96 385 2849 2385 2187 999 287
## portuguese russian spanish
## 825 207 3037
round((table(data_included_documented$language)/n_part)*100,2)
##
## chinese danish english french german italian japanese
## 0.72 2.90 21.49 17.99 16.50 7.54 2.16
## portuguese russian spanish
## 6.22 1.56 22.91
Country
country_absolute = as.data.frame(table(data_included_documented$country))
country_freq = as.data.frame(round((table(data_included_documented$country)/n_part)*100,2))
country = left_join(country_absolute, country_freq, by = "Var1")
country = country %>% rename(Country = Var1,
n = Freq.x,
percentage = Freq.y)
kable(country)
Afghanistan |
1 |
0.01 |
Albania |
2 |
0.02 |
Algeria |
7 |
0.05 |
Andorra |
6 |
0.05 |
Antigua and Barbuda |
2 |
0.02 |
Argentina |
217 |
1.64 |
Armenia |
2 |
0.02 |
Aruba |
1 |
0.01 |
Australia |
133 |
1.00 |
Austria |
197 |
1.49 |
Bahamas, The |
1 |
0.01 |
Bahrain |
3 |
0.02 |
Barbados |
1 |
0.01 |
Belarus |
13 |
0.10 |
Belgium |
102 |
0.77 |
Belize |
1 |
0.01 |
Benin |
2 |
0.02 |
Bolivia |
23 |
0.17 |
Bosnia and Herzegovina |
6 |
0.05 |
Botswana |
1 |
0.01 |
Brazil |
806 |
6.08 |
Bulgaria |
9 |
0.07 |
Burma |
1 |
0.01 |
Cameroon |
3 |
0.02 |
Canada |
338 |
2.55 |
Central African Republic |
2 |
0.02 |
Chile |
154 |
1.16 |
China |
90 |
0.68 |
Colombia |
387 |
2.92 |
Costa Rica |
47 |
0.35 |
Cote d’Ivoire |
1 |
0.01 |
Croatia |
6 |
0.05 |
Cuba |
1 |
0.01 |
Czechia |
11 |
0.08 |
Denmark |
395 |
2.98 |
Dominica |
2 |
0.02 |
Dominican Republic |
41 |
0.31 |
East Timor (see Timor-Leste) |
1 |
0.01 |
Ecuador |
102 |
0.77 |
Egypt |
3 |
0.02 |
El Salvador |
26 |
0.20 |
Estonia |
12 |
0.09 |
Ethiopia |
1 |
0.01 |
Fiji |
1 |
0.01 |
Finland |
31 |
0.23 |
France |
2013 |
15.18 |
Georgia |
3 |
0.02 |
Germany |
1846 |
13.92 |
Ghana |
3 |
0.02 |
Greece |
4 |
0.03 |
Grenada |
1 |
0.01 |
Guatemala |
61 |
0.46 |
Guinea-Bissau |
1 |
0.01 |
Guyana |
3 |
0.02 |
Haiti |
4 |
0.03 |
Honduras |
18 |
0.14 |
Hong Kong |
8 |
0.06 |
Hungary |
9 |
0.07 |
Iceland |
5 |
0.04 |
India |
45 |
0.34 |
Indonesia |
18 |
0.14 |
Iran |
7 |
0.05 |
Iraq |
1 |
0.01 |
Ireland |
59 |
0.45 |
Israel |
13 |
0.10 |
Italy |
968 |
7.30 |
Jamaica |
6 |
0.05 |
Japan |
290 |
2.19 |
Jordan |
2 |
0.02 |
Kazakhstan |
9 |
0.07 |
Kenya |
6 |
0.05 |
Kuwait |
1 |
0.01 |
Kyrgyzstan |
2 |
0.02 |
Latvia |
8 |
0.06 |
Lebanon |
3 |
0.02 |
Liechtenstein |
1 |
0.01 |
Lithuania |
3 |
0.02 |
Luxembourg |
13 |
0.10 |
Macedonia |
1 |
0.01 |
Madagascar |
1 |
0.01 |
Malaysia |
17 |
0.13 |
Maldives |
1 |
0.01 |
Mali |
2 |
0.02 |
Malta |
2 |
0.02 |
Marshall Islands |
1 |
0.01 |
Mauritania |
1 |
0.01 |
Mauritius |
2 |
0.02 |
Mexico |
1157 |
8.73 |
Micronesia |
1 |
0.01 |
Monaco |
1 |
0.01 |
Montenegro |
1 |
0.01 |
Morocco |
16 |
0.12 |
Namibia |
4 |
0.03 |
Nepal |
1 |
0.01 |
Netherlands |
44 |
0.33 |
New Zealand |
34 |
0.26 |
Nicaragua |
15 |
0.11 |
Nigeria |
6 |
0.05 |
Norway |
12 |
0.09 |
Pakistan |
8 |
0.06 |
Palestinian Territories |
2 |
0.02 |
Panama |
15 |
0.11 |
Paraguay |
11 |
0.08 |
Peru |
119 |
0.90 |
Philippines |
36 |
0.27 |
Poland |
7 |
0.05 |
Portugal |
51 |
0.38 |
Qatar |
2 |
0.02 |
Romania |
24 |
0.18 |
Russia |
155 |
1.17 |
Saint Lucia |
2 |
0.02 |
Saint Vincent and the Grenadines |
1 |
0.01 |
Saudi Arabia |
6 |
0.05 |
Senegal |
5 |
0.04 |
Serbia |
5 |
0.04 |
Singapore |
26 |
0.20 |
Sint Maarten |
1 |
0.01 |
Slovakia |
3 |
0.02 |
Slovenia |
3 |
0.02 |
South Africa |
29 |
0.22 |
South Korea |
5 |
0.04 |
South Sudan |
1 |
0.01 |
Spain |
562 |
4.24 |
Sri Lanka |
3 |
0.02 |
Swaziland |
1 |
0.01 |
Sweden |
27 |
0.20 |
Switzerland |
280 |
2.11 |
Syria |
1 |
0.01 |
Taiwan |
7 |
0.05 |
Tanzania |
1 |
0.01 |
Thailand |
4 |
0.03 |
Trinidad and Tobago |
8 |
0.06 |
Tunisia |
7 |
0.05 |
Turkey |
8 |
0.06 |
Turkmenistan |
2 |
0.02 |
Uganda |
1 |
0.01 |
Ukraine |
21 |
0.16 |
United Arab Emirates |
14 |
0.11 |
United Kingdom |
499 |
3.76 |
United States of America |
1254 |
9.46 |
Uruguay |
24 |
0.18 |
Venezuela |
67 |
0.51 |
Vietnam |
2 |
0.02 |
Zimbabwe |
1 |
0.01 |
write.table(country, file = "country.txt", sep = ",")
kable(country %>% arrange(-n))
France |
2013 |
15.18 |
Germany |
1846 |
13.92 |
United States of America |
1254 |
9.46 |
Mexico |
1157 |
8.73 |
Italy |
968 |
7.30 |
Brazil |
806 |
6.08 |
Spain |
562 |
4.24 |
United Kingdom |
499 |
3.76 |
Denmark |
395 |
2.98 |
Colombia |
387 |
2.92 |
Canada |
338 |
2.55 |
Japan |
290 |
2.19 |
Switzerland |
280 |
2.11 |
Argentina |
217 |
1.64 |
Austria |
197 |
1.49 |
Russia |
155 |
1.17 |
Chile |
154 |
1.16 |
Australia |
133 |
1.00 |
Peru |
119 |
0.90 |
Belgium |
102 |
0.77 |
Ecuador |
102 |
0.77 |
China |
90 |
0.68 |
Venezuela |
67 |
0.51 |
Guatemala |
61 |
0.46 |
Ireland |
59 |
0.45 |
Portugal |
51 |
0.38 |
Costa Rica |
47 |
0.35 |
India |
45 |
0.34 |
Netherlands |
44 |
0.33 |
Dominican Republic |
41 |
0.31 |
Philippines |
36 |
0.27 |
New Zealand |
34 |
0.26 |
Finland |
31 |
0.23 |
South Africa |
29 |
0.22 |
Sweden |
27 |
0.20 |
El Salvador |
26 |
0.20 |
Singapore |
26 |
0.20 |
Romania |
24 |
0.18 |
Uruguay |
24 |
0.18 |
Bolivia |
23 |
0.17 |
Ukraine |
21 |
0.16 |
Honduras |
18 |
0.14 |
Indonesia |
18 |
0.14 |
Malaysia |
17 |
0.13 |
Morocco |
16 |
0.12 |
Nicaragua |
15 |
0.11 |
Panama |
15 |
0.11 |
United Arab Emirates |
14 |
0.11 |
Belarus |
13 |
0.10 |
Israel |
13 |
0.10 |
Luxembourg |
13 |
0.10 |
Estonia |
12 |
0.09 |
Norway |
12 |
0.09 |
Czechia |
11 |
0.08 |
Paraguay |
11 |
0.08 |
Bulgaria |
9 |
0.07 |
Hungary |
9 |
0.07 |
Kazakhstan |
9 |
0.07 |
Hong Kong |
8 |
0.06 |
Latvia |
8 |
0.06 |
Pakistan |
8 |
0.06 |
Trinidad and Tobago |
8 |
0.06 |
Turkey |
8 |
0.06 |
Algeria |
7 |
0.05 |
Iran |
7 |
0.05 |
Poland |
7 |
0.05 |
Taiwan |
7 |
0.05 |
Tunisia |
7 |
0.05 |
Andorra |
6 |
0.05 |
Bosnia and Herzegovina |
6 |
0.05 |
Croatia |
6 |
0.05 |
Jamaica |
6 |
0.05 |
Kenya |
6 |
0.05 |
Nigeria |
6 |
0.05 |
Saudi Arabia |
6 |
0.05 |
Iceland |
5 |
0.04 |
Senegal |
5 |
0.04 |
Serbia |
5 |
0.04 |
South Korea |
5 |
0.04 |
Greece |
4 |
0.03 |
Haiti |
4 |
0.03 |
Namibia |
4 |
0.03 |
Thailand |
4 |
0.03 |
Bahrain |
3 |
0.02 |
Cameroon |
3 |
0.02 |
Egypt |
3 |
0.02 |
Georgia |
3 |
0.02 |
Ghana |
3 |
0.02 |
Guyana |
3 |
0.02 |
Lebanon |
3 |
0.02 |
Lithuania |
3 |
0.02 |
Slovakia |
3 |
0.02 |
Slovenia |
3 |
0.02 |
Sri Lanka |
3 |
0.02 |
Albania |
2 |
0.02 |
Antigua and Barbuda |
2 |
0.02 |
Armenia |
2 |
0.02 |
Benin |
2 |
0.02 |
Central African Republic |
2 |
0.02 |
Dominica |
2 |
0.02 |
Jordan |
2 |
0.02 |
Kyrgyzstan |
2 |
0.02 |
Mali |
2 |
0.02 |
Malta |
2 |
0.02 |
Mauritius |
2 |
0.02 |
Palestinian Territories |
2 |
0.02 |
Qatar |
2 |
0.02 |
Saint Lucia |
2 |
0.02 |
Turkmenistan |
2 |
0.02 |
Vietnam |
2 |
0.02 |
Afghanistan |
1 |
0.01 |
Aruba |
1 |
0.01 |
Bahamas, The |
1 |
0.01 |
Barbados |
1 |
0.01 |
Belize |
1 |
0.01 |
Botswana |
1 |
0.01 |
Burma |
1 |
0.01 |
Cote d’Ivoire |
1 |
0.01 |
Cuba |
1 |
0.01 |
East Timor (see Timor-Leste) |
1 |
0.01 |
Ethiopia |
1 |
0.01 |
Fiji |
1 |
0.01 |
Grenada |
1 |
0.01 |
Guinea-Bissau |
1 |
0.01 |
Iraq |
1 |
0.01 |
Kuwait |
1 |
0.01 |
Liechtenstein |
1 |
0.01 |
Macedonia |
1 |
0.01 |
Madagascar |
1 |
0.01 |
Maldives |
1 |
0.01 |
Marshall Islands |
1 |
0.01 |
Mauritania |
1 |
0.01 |
Micronesia |
1 |
0.01 |
Monaco |
1 |
0.01 |
Montenegro |
1 |
0.01 |
Nepal |
1 |
0.01 |
Saint Vincent and the Grenadines |
1 |
0.01 |
Sint Maarten |
1 |
0.01 |
South Sudan |
1 |
0.01 |
Swaziland |
1 |
0.01 |
Syria |
1 |
0.01 |
Tanzania |
1 |
0.01 |
Uganda |
1 |
0.01 |
Zimbabwe |
1 |
0.01 |
country = country %>%
mutate(continent = countrycode(Country,
origin = "country.name",
destination = "continent"),
continent = ifelse(Country == "Micronesia",
"Oceania",
continent))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `continent = countrycode(Country, origin = "country.name",
## destination = "continent")`.
## Caused by warning:
## ! Some values were not matched unambiguously: Micronesia
continents <- country %>%
group_by(continent) %>%
summarize(n = sum(n)) %>%
mutate(freq = round((n/n_part)*100, 2)) %>%
arrange(-n)
Descriptives and Correlation Table
cor = data_included_documented %>%
select(political_orientation,
age,
pref_politicalsim,
pref_ethnicalsim,
pref_religioussim,
pref_level_financially_secure_successful_ambitious,
pref_level_confident_assertive,
pref_level_intelligence_educated,
pref_level_kind_supportive,
pref_level_attractiveness,
imp_age,
ideal_age,
imp_height,
ideal_height,
interest_single,
interest_sexrel,
interest_nonmonrel,
interest_monrel,
)
kable(round(cor(cor, use="pairwise.complete.obs"),2))
political_orientation |
1.00 |
-0.05 |
-0.12 |
0.15 |
0.12 |
0.16 |
0.12 |
0.06 |
0.03 |
0.05 |
0.10 |
-0.05 |
0.13 |
0.01 |
-0.04 |
0.06 |
-0.05 |
-0.02 |
age |
-0.05 |
1.00 |
0.11 |
0.03 |
0.11 |
0.07 |
0.10 |
0.07 |
0.04 |
-0.02 |
-0.05 |
0.90 |
-0.04 |
-0.05 |
-0.03 |
-0.11 |
0.01 |
0.07 |
pref_politicalsim |
-0.12 |
0.11 |
1.00 |
0.14 |
0.43 |
0.06 |
-0.02 |
0.13 |
0.06 |
0.12 |
0.11 |
0.11 |
0.05 |
-0.01 |
0.01 |
-0.03 |
-0.02 |
0.11 |
pref_ethnicalsim |
0.15 |
0.03 |
0.14 |
1.00 |
0.24 |
0.15 |
0.03 |
0.06 |
0.06 |
0.16 |
0.15 |
0.03 |
0.11 |
0.00 |
-0.06 |
0.03 |
-0.04 |
-0.01 |
pref_religioussim |
0.12 |
0.11 |
0.43 |
0.24 |
1.00 |
0.16 |
0.09 |
0.11 |
0.10 |
0.08 |
0.19 |
0.11 |
0.13 |
0.01 |
-0.03 |
0.10 |
-0.08 |
0.07 |
pref_level_financially_secure_successful_ambitious |
0.16 |
0.07 |
0.06 |
0.15 |
0.16 |
1.00 |
0.36 |
0.43 |
0.24 |
0.27 |
0.18 |
0.10 |
0.25 |
0.10 |
0.00 |
0.04 |
-0.02 |
0.03 |
pref_level_confident_assertive |
0.12 |
0.10 |
-0.02 |
0.03 |
0.09 |
0.36 |
1.00 |
0.32 |
0.24 |
0.13 |
0.12 |
0.12 |
0.20 |
0.05 |
0.04 |
0.06 |
0.03 |
-0.04 |
pref_level_intelligence_educated |
0.06 |
0.07 |
0.13 |
0.06 |
0.11 |
0.43 |
0.32 |
1.00 |
0.20 |
0.22 |
0.16 |
0.09 |
0.22 |
0.07 |
0.04 |
0.03 |
0.00 |
0.01 |
pref_level_kind_supportive |
0.03 |
0.04 |
0.06 |
0.06 |
0.10 |
0.24 |
0.24 |
0.20 |
1.00 |
0.13 |
0.10 |
0.04 |
0.07 |
0.01 |
-0.06 |
0.05 |
-0.05 |
0.01 |
pref_level_attractiveness |
0.05 |
-0.02 |
0.12 |
0.16 |
0.08 |
0.27 |
0.13 |
0.22 |
0.13 |
1.00 |
0.16 |
-0.03 |
0.27 |
0.09 |
-0.04 |
-0.04 |
0.02 |
0.01 |
imp_age |
0.10 |
-0.05 |
0.11 |
0.15 |
0.19 |
0.18 |
0.12 |
0.16 |
0.10 |
0.16 |
1.00 |
-0.04 |
0.35 |
0.03 |
0.01 |
0.04 |
-0.05 |
0.03 |
ideal_age |
-0.05 |
0.90 |
0.11 |
0.03 |
0.11 |
0.10 |
0.12 |
0.09 |
0.04 |
-0.03 |
-0.04 |
1.00 |
-0.01 |
-0.03 |
-0.02 |
-0.10 |
0.02 |
0.06 |
imp_height |
0.13 |
-0.04 |
0.05 |
0.11 |
0.13 |
0.25 |
0.20 |
0.22 |
0.07 |
0.27 |
0.35 |
-0.01 |
1.00 |
0.29 |
0.02 |
0.02 |
-0.01 |
0.02 |
ideal_height |
0.01 |
-0.05 |
-0.01 |
0.00 |
0.01 |
0.10 |
0.05 |
0.07 |
0.01 |
0.09 |
0.03 |
-0.03 |
0.29 |
1.00 |
0.00 |
-0.02 |
-0.01 |
0.03 |
interest_single |
-0.04 |
-0.03 |
0.01 |
-0.06 |
-0.03 |
0.00 |
0.04 |
0.04 |
-0.06 |
-0.04 |
0.01 |
-0.02 |
0.02 |
0.00 |
1.00 |
0.18 |
0.18 |
-0.08 |
interest_sexrel |
0.06 |
-0.11 |
-0.03 |
0.03 |
0.10 |
0.04 |
0.06 |
0.03 |
0.05 |
-0.04 |
0.04 |
-0.10 |
0.02 |
-0.02 |
0.18 |
1.00 |
0.12 |
0.01 |
interest_nonmonrel |
-0.05 |
0.01 |
-0.02 |
-0.04 |
-0.08 |
-0.02 |
0.03 |
0.00 |
-0.05 |
0.02 |
-0.05 |
0.02 |
-0.01 |
-0.01 |
0.18 |
0.12 |
1.00 |
-0.23 |
interest_monrel |
-0.02 |
0.07 |
0.11 |
-0.01 |
0.07 |
0.03 |
-0.04 |
0.01 |
0.01 |
0.01 |
0.03 |
0.06 |
0.02 |
0.03 |
-0.08 |
0.01 |
-0.23 |
1.00 |
apa_table_cor = apa.cor.table(cor, filename = "descriptives.doc")